Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice ...In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice of signal type for different exploration tasks.By the threshold of the amplitude of the transmitted signal,a set of candidate frequencies are first selected.Then,by operating a spectrum envelope method at these candidate frequencies on received data,effective components in data are extracted.A frequency density calculation method is proposed based on a logical number summation method,to reasonably characterize the frequency density in different frequency bands.By applying this method to real data in Sichuan,China,with signal Type 13,75 effective components are extracted,including both main frequencies and harmonics.The result suggests that the number of effective frequencies in the 2^(n) sequence pseudo-random signal can be increased by extracting usable harmonics,without any additional fieldwork.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC0604902)the National Natural Science Foundation of China(No.42004056)the Natural Science Foundation of Shandong Province,China(No.ZR201911010111).
文摘In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice of signal type for different exploration tasks.By the threshold of the amplitude of the transmitted signal,a set of candidate frequencies are first selected.Then,by operating a spectrum envelope method at these candidate frequencies on received data,effective components in data are extracted.A frequency density calculation method is proposed based on a logical number summation method,to reasonably characterize the frequency density in different frequency bands.By applying this method to real data in Sichuan,China,with signal Type 13,75 effective components are extracted,including both main frequencies and harmonics.The result suggests that the number of effective frequencies in the 2^(n) sequence pseudo-random signal can be increased by extracting usable harmonics,without any additional fieldwork.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.