As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted ex...As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted extended boundary condition method,and some theoretic results are provided for improving rain measurement accuracy.Furthermore,phase information, another important characteristic quantity of microwave,is considered for tapping the potentialities of the new meteorological radar system.展开更多
The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well...The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well logging has a strong shielding effect on the electromagnetic waves, thus bringing some difficulties to the application of the frequency domain electromagnetic method in production well logging. According to the relation of the field source geometry to the ring around the mandrel, the general expressions of frequency domain electromagnetic responses in axially symmetrical layered conductive medium are deduced. The propagation effects caused by the low-frequency electromagnetic waves in cased hole are also analyzed. The distribution curves of eddy current density and magnetic flux density along the radial direction in the mandrel indicate that the eddy loss within the mandrel is proportional to the transmission signal frequency and the mandrel conductivity. The secondary field responses of different casing materials show that the transmission frequency has an important effect on the ability of electromagnetic waves penetrating the metal casing. The transmission frequency should be ultra-low in order to enable the electromagnetic signal to penetrate the casing easily. The numerical results of frequency responses for different casing physical parameters show that the casing thickness has a significant impact on the choice of the transmission frequency. It is also found that the effect of the casing radius on the transmission frequency can be neglected.展开更多
文摘As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted extended boundary condition method,and some theoretic results are provided for improving rain measurement accuracy.Furthermore,phase information, another important characteristic quantity of microwave,is considered for tapping the potentialities of the new meteorological radar system.
基金supported by the National Natural Science Foundation of China (No.50974103, No.61003196)the Specialized Research Plan of Shaanxi Province Education Department (No.2010JK787)
文摘The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well logging has a strong shielding effect on the electromagnetic waves, thus bringing some difficulties to the application of the frequency domain electromagnetic method in production well logging. According to the relation of the field source geometry to the ring around the mandrel, the general expressions of frequency domain electromagnetic responses in axially symmetrical layered conductive medium are deduced. The propagation effects caused by the low-frequency electromagnetic waves in cased hole are also analyzed. The distribution curves of eddy current density and magnetic flux density along the radial direction in the mandrel indicate that the eddy loss within the mandrel is proportional to the transmission signal frequency and the mandrel conductivity. The secondary field responses of different casing materials show that the transmission frequency has an important effect on the ability of electromagnetic waves penetrating the metal casing. The transmission frequency should be ultra-low in order to enable the electromagnetic signal to penetrate the casing easily. The numerical results of frequency responses for different casing physical parameters show that the casing thickness has a significant impact on the choice of the transmission frequency. It is also found that the effect of the casing radius on the transmission frequency can be neglected.