期刊文献+

基于模糊集理论的降雨不确定性传播影响研究 被引量:9

Propagation effect of precipitation uncertainty on rainfall-runoff modeling based on fuzzy set theory
下载PDF
导出
摘要 基于模糊集理论,耦合遗传算法,量化分析降雨的量级、空间分布和时程分配产生的不确定性对流量模拟的影响。雨量量级的不确定性使用模糊集概念表示,运用遗传算法对时段雨量在时间上进行随机解集,并通过在各子流域上采用不同的时间解集模式以同时考虑降雨时程分配和空间分布不确定性。应用TOPMODEL对资水流域新宁水文站洪水过程进行模拟研究,结果表明,雨量不确定性的传播对洪水预报的影响处于主导地位,降雨时空分布引起的不确定性对洪水模拟的影响次之。此外,通过对1 h和0.5 h解集结果的比较发现,本文中采用1 h作为模拟的时间步长已可以较充分反映雨量的时间变异性。 In order to study the propagation effect of the precipitation uncertainties on the flood forecasting, the paper presents a methodology combining the fuzzy set theory with the genetic algorithm to quantify the effect of the uncertainty on the discharge simulation due to the precipitation magnitude and temporal-spatial distribution. The uncertainty of precipitation magnitude is represented by the fuzzy set concepts. The random disaggregation of precipitation into the shorter time step takes into account the uncertainty associated with temporal distribution of precipitation. The spatial variations of rainfall fields are represented by the different temporal disaggregation pattems within the sub-catchments. All the kinds of uncertainties are propagated through the fuzzy extension principle. Based on the methodology above, the TOPMODEL is used to simulate the flood events in the up- stream area of the Xinning hydrological station. The results show that the uncertainty in the magnitude is more significant than the uncertainty resulting from the spatial-temporal distribution of precipitation. Moreover, there is no more difference between the precipitation uncertainty with time step of 1 hour and that with time step of 0.5 hour. It means the simulated time step of 1 hour is able to represent the temporal variation of precipitation in the study area.
出处 《水科学进展》 EI CAS CSCD 北大核心 2009年第3期422-427,共6页 Advances in Water Science
基金 教育部、国家外专局高等学校学科创新引智计划资助项目(B08048) 教育部长江学者和创新团队发展计划资助项目(IRT0717)~~
关键词 降雨 不确定性 洪水 模糊集理论 TOPMODEL 遗传算法 传播影响 precipitation uncertainty flood fuzzy set theory TOPMODEL genetic algorithm propagation effects
  • 相关文献

参考文献11

  • 1黄伟军,丁晶.水文水资源系统贝叶斯分析现状与前景[J].水科学进展,1994,5(3):242-247. 被引量:27
  • 2SVEN G, HARALD K, ANDRAS B. Uncertainties in water balance estimations due to scarce meteorological information: A case study for the White Volta catchment in West Africa[ C]//Proceedings of symposium HS2004 at IUGG2007 on quantification and reducing of predictive uncertainty for sustainable water resources management. Perugia: IAHS Publ Press, 2007: 86- 97. 被引量:1
  • 3FREER J E, MCMILLAN H, MCDONNELL J J, et al. Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures[J]. Journal of Hydrology, 2004, 291: 254- 277. 被引量:1
  • 4SHREEDHAR M, VINCENT G, ROLAND K P. Treatment of precipitation uncertainty in rainfaU-nmoff modeling: A fuzzy set approach[J]. Advances in Water Resources, 2004, 27:889 - 898. 被引量:1
  • 5YAGER R R. A characterization of the extension principle[J]. Fuzzy Sets and Systems, 1986, 18:205 - 217. 被引量:1
  • 6杨晓华,陆桂华,郦建强.混合加速遗传算法在流域模型参数优化中的应用[J].水科学进展,2002,13(3):340-344. 被引量:34
  • 7赵亮,雎刚,吕剑虹.一种改进的遗传多目标优化算法及其应用[J].中国电机工程学报,2008,28(2):96-102. 被引量:45
  • 8MARTS W, GARBRECHT J. Numerical definition of drainage network and subcatchment areas from digital elevation models[J]. Computers and Geosciences, 1992, 18(6): 747-761. 被引量:1
  • 9WOLOCK D M. Simulating the variable-source-area concept of streamilow generation with the watershed model TOPMODEL[ R]. U S Geological Survey: Water Resource Invest Rep, 1993: 93- 124. 被引量:1
  • 10DUAN Q, GUPTA V K, SOROOSHIAN S. A shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications, 1993, 76(3) : 501 - 521. 被引量:1

二级参考文献21

  • 1杨莉,高晓光,符小卫.优化设计中的多目标进化算法[J].计算机工程与应用,2005,41(6):33-36. 被引量:7
  • 2张兴华,朱筱蓉,林锦国.基于自适应遗传算法的多目标PID优化设计[J].系统工程与电子技术,2006,28(5):744-746. 被引量:8
  • 3玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:396
  • 4Lucas A W, Michelle D M, Jason P P, et al. Parallel genetic algorithm for search and constrained multi-objective optimization[C]. Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, USA, 2003. 被引量:1
  • 5Tan K C, Lee T H, Yang Y J, et al. A cooperative coevolutionary algorithm for multiobjective optimization[C]. IEEE International Conference on Systems, Man and Cybernetics, Holland, 2004, 1926-1931. 被引量:1
  • 6Nateri K, Madavan. Multiobjective optimization using a pareto differential evolution approach[C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA, 2002, 1145-1150. 被引量:1
  • 7Parsopoulos K E, Tasoulis D K, Pavlidis N G, et al. Vector evaluated differential evolution for multiobjective optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), Portland, USA, 2004, 204-211. 被引量:1
  • 8Oltean M, Grosan C, Abraham A, et al. Multiobjective optimization using adaptive pareto archived evolution strategy[C]. Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, Wroclaw, Poland, 2005, 558-563. 被引量:1
  • 9De T F, Ortega J, Fernandez J, et al. A parallel genetic algorithm for multiobjective optimization[C]. Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-Based, Canary Islands, Spain, 2002, 384-391. 被引量:1
  • 10Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. 被引量:1

共引文献103

同被引文献171

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部