The core promoter(CP) of the viral genome plays an important role for hepatitis B virus(HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic(pg) RNAs. The CP ...The core promoter(CP) of the viral genome plays an important role for hepatitis B virus(HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic(pg) RNAs. The CP consists of the upper regulatory region and the basa core promoter(BCP). The CP overlaps with the 3'-end of the X open reading frames and the 5'-end of the precore region,and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation,when variations appear,they may contribute to the persistence of HBV within the host,leading to chronic infection and cirrhosis,and eventually,hepatocellular carcinoma. Among CP sequence variations,those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen,and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.展开更多
Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin i...Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.展开更多
Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat(Triticum aestivum.L.,BBAADD)is hypothesized to increase its adaptability and/or plasticity.However,the...Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat(Triticum aestivum.L.,BBAADD)is hypothesized to increase its adaptability and/or plasticity.However,the molecular basis of expression divergence remains unclear.Squamosa promoter-binding protein-like(SPL)transcription factors are critical for a wide array of biological processes.In this study,we constructed expression regulatory networks by combining DAP-seq for 40 SPLs,ATACseq,and RNA-seq.Our findings indicate that a group of low-affinity SPL binding regions(SBRs)were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif.The SBRs including the low-affinity ones are evolutionarily conserved,enriched GWAS signals related to important agricultural traits.However,those SBRs are highly diversified among the cis-regulatory regions(CREs)of syntenic genes,with less than 8%SBRs coexisting in triad genes,suggesting that CRE variations are critical for subgenome differentiations.Knocking out of Ta SPL7A/B/D and Ta SPL15A/B/D subfamily further proved that both high-and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes.Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.展开更多
The restriction of immunoglobulin(Ig)expression to B lymphocytes is well established.However,several reports have confirmed that the Ig gene can be expressed in many non-B cancer cells and/or some normal cells.Our aim...The restriction of immunoglobulin(Ig)expression to B lymphocytes is well established.However,several reports have confirmed that the Ig gene can be expressed in many non-B cancer cells and/or some normal cells.Our aim is to determine whether the Ig gene promoter can be activated in non-B cancer cells and to identify the regulatory mechanism for Ig gene expression.Our results show that the Ig promoter of VH4-59 was activated in several non-B cancer cell lines.Moreover,two novel positive regulatory elements,an enhancer-like element at 2800 to 2610 bp and a copromoter-like element at 2610 to 2300 bp,were identified in two epithelial cancer cell lines,HeLa S3 and HT-29.The octamer element(59-ATGCAAAT-39)located in the Ig promoter,a crucial element for B-cell-derived Ig gene transcription,was also very important for non-B-cell-derived Ig gene transcription.More importantly,we confirmed that octamer-related protein-1(Oct-1),but not Oct-2,was a crucial transcriptional factor for Ig gene transcription due to its ability to bind to the octamer element of the Ig promoter in epithelial cancer cells.These results suggested the presence of a distinct regulatory mechanism for Ig gene expression in non-B cancer cells.展开更多
文摘The core promoter(CP) of the viral genome plays an important role for hepatitis B virus(HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic(pg) RNAs. The CP consists of the upper regulatory region and the basa core promoter(BCP). The CP overlaps with the 3'-end of the X open reading frames and the 5'-end of the precore region,and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation,when variations appear,they may contribute to the persistence of HBV within the host,leading to chronic infection and cirrhosis,and eventually,hepatocellular carcinoma. Among CP sequence variations,those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen,and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.
文摘Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.
基金supported by the Central Publicinterest Scientific Institution Basic Research Found(S2022ZD02)the Excellent Young Scientists Fund(Overseas)of National Natural Science Foundation of China+2 种基金the Fundamental Research Funds from the Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(S2020YC07,S2021YC03)the Major Basic Research Program of Shandong Natural Science Foundation(ZR2019ZD15)the Top Talents Program“One Case One Discussion(Yishiyiyi)”of Shandong Province,China。
文摘Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat(Triticum aestivum.L.,BBAADD)is hypothesized to increase its adaptability and/or plasticity.However,the molecular basis of expression divergence remains unclear.Squamosa promoter-binding protein-like(SPL)transcription factors are critical for a wide array of biological processes.In this study,we constructed expression regulatory networks by combining DAP-seq for 40 SPLs,ATACseq,and RNA-seq.Our findings indicate that a group of low-affinity SPL binding regions(SBRs)were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif.The SBRs including the low-affinity ones are evolutionarily conserved,enriched GWAS signals related to important agricultural traits.However,those SBRs are highly diversified among the cis-regulatory regions(CREs)of syntenic genes,with less than 8%SBRs coexisting in triad genes,suggesting that CRE variations are critical for subgenome differentiations.Knocking out of Ta SPL7A/B/D and Ta SPL15A/B/D subfamily further proved that both high-and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes.Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.
基金supported by Fundamental Research Grants 30572094 and 30772470 from the Natural Sciences Foundation,China.We thank Dr Dalong Ma and Dr Mingxu Xu(Peking University Center for Human Disease Genomics)for their comments and suggestions.This manuscript was proofread by an English-speaking professional with a science background at Elixigen Corporation.
文摘The restriction of immunoglobulin(Ig)expression to B lymphocytes is well established.However,several reports have confirmed that the Ig gene can be expressed in many non-B cancer cells and/or some normal cells.Our aim is to determine whether the Ig gene promoter can be activated in non-B cancer cells and to identify the regulatory mechanism for Ig gene expression.Our results show that the Ig promoter of VH4-59 was activated in several non-B cancer cell lines.Moreover,two novel positive regulatory elements,an enhancer-like element at 2800 to 2610 bp and a copromoter-like element at 2610 to 2300 bp,were identified in two epithelial cancer cell lines,HeLa S3 and HT-29.The octamer element(59-ATGCAAAT-39)located in the Ig promoter,a crucial element for B-cell-derived Ig gene transcription,was also very important for non-B-cell-derived Ig gene transcription.More importantly,we confirmed that octamer-related protein-1(Oct-1),but not Oct-2,was a crucial transcriptional factor for Ig gene transcription due to its ability to bind to the octamer element of the Ig promoter in epithelial cancer cells.These results suggested the presence of a distinct regulatory mechanism for Ig gene expression in non-B cancer cells.