The "Grain for Green Project" initiated by the governments since 1999 were the dominant contributors to the vegetation restoration in the agro-pastoral transitional zone of northern China. Climate change and human a...The "Grain for Green Project" initiated by the governments since 1999 were the dominant contributors to the vegetation restoration in the agro-pastoral transitional zone of northern China. Climate change and human activities are responsible for the improvement and degradation to a certain degree. In order to monitor the vegetation variations and clarify the causes of rehabilitation in the Shaanxi-Gansu-Ningxia Region, this paper, based on the MODIS-NDVI and climate data during the period of 2000-2009, analyzes the main charac- teristics, spatial-temporal distribution and reasons of vegetation restoration, using methods of linear regression, the Hurst Exponent, standard deviation and other methods. Results are shown as follows. (1) From 2000 to 2009, the NDVI of the study area was improved progres- sively, with a linear tendency being 0.032/10a, faster than the growth of the Three-North Shelter Forest Program (0.007/10a) from 1982 to 2006. (2) The vegetation restoration is characterized by two fast-growing periods, with an "S-shaped" increasing curve. (3) The largest proportion of the contribution to vegetation restoration was observed in the slightly improved area, followed by the moderate and the significantly improved area; the degraded area is distributed sporadically over southern part of Ningxia Hui Autonomous Region as well as eastern Dingbian of Shaanxi province, Huanxian and Zhengyuan of Gansu province. (4) Climate change and human activities are two driving forces in vegetation restoration; more- over anthropogenic factors such as "Grain for Green Project" were the main causes leading to an increasing trend of NDVI on local scale. However, its influencing mechanism remains to be further investigated. (5) The Hurst Exponent of NDVI time series shows that the vegetation restoration was sustainable. It is expected that improvement in vegetation cover will expand to the most parts of the region.展开更多
Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-...Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.展开更多
基金National Natural Science Foundation of China, No.41171090 No.40871052
文摘The "Grain for Green Project" initiated by the governments since 1999 were the dominant contributors to the vegetation restoration in the agro-pastoral transitional zone of northern China. Climate change and human activities are responsible for the improvement and degradation to a certain degree. In order to monitor the vegetation variations and clarify the causes of rehabilitation in the Shaanxi-Gansu-Ningxia Region, this paper, based on the MODIS-NDVI and climate data during the period of 2000-2009, analyzes the main charac- teristics, spatial-temporal distribution and reasons of vegetation restoration, using methods of linear regression, the Hurst Exponent, standard deviation and other methods. Results are shown as follows. (1) From 2000 to 2009, the NDVI of the study area was improved progres- sively, with a linear tendency being 0.032/10a, faster than the growth of the Three-North Shelter Forest Program (0.007/10a) from 1982 to 2006. (2) The vegetation restoration is characterized by two fast-growing periods, with an "S-shaped" increasing curve. (3) The largest proportion of the contribution to vegetation restoration was observed in the slightly improved area, followed by the moderate and the significantly improved area; the degraded area is distributed sporadically over southern part of Ningxia Hui Autonomous Region as well as eastern Dingbian of Shaanxi province, Huanxian and Zhengyuan of Gansu province. (4) Climate change and human activities are two driving forces in vegetation restoration; more- over anthropogenic factors such as "Grain for Green Project" were the main causes leading to an increasing trend of NDVI on local scale. However, its influencing mechanism remains to be further investigated. (5) The Hurst Exponent of NDVI time series shows that the vegetation restoration was sustainable. It is expected that improvement in vegetation cover will expand to the most parts of the region.
文摘Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.