A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys...A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.展开更多
A universal simulator capable of simulating virtually any user-defined electrochemical/chemical problems in one-dimensional diffusion geometry was developed based on an exponentially expanding grid modification of the...A universal simulator capable of simulating virtually any user-defined electrochemical/chemical problems in one-dimensional diffusion geometry was developed based on an exponentially expanding grid modification of the existing network approach. Some generalized reaction-diffusion governing equations of an arbitrary electrochemical/chemical process were derived, and program controlled automatic generation of the corresponding PSPICE netlist file was realized. On the basis of the above techniques, a universal simulator package was realized, which is capable of dealing with arbitrarily complex electrochemical/chemical problems with one-dimensional diffusion geometry such as planar diffusion, spherical diffusion, cylindrical diffusion and rotational disk diffusion-convection processes. The building of such a simulator is easy and thus it would be very convenient to have it updated for simulations of newly raised electrochemical problems.展开更多
This paper shows how a desktop simulation can be migrated into its cloud equivalence using Windows Azure. It is undeniable that simulators are expensive and cost-intensive regarding maintenance and upgrading, and thus...This paper shows how a desktop simulation can be migrated into its cloud equivalence using Windows Azure. It is undeniable that simulators are expensive and cost-intensive regarding maintenance and upgrading, and thus, it is not always feasible to buy such a simulator. Therefore, it will be of great significance if we have an approach, which provides simulators with services through the Internet with the aim of making them accessible from anywhere and at any time. That is, researchers and developers can focus on their actual researches and experiments and the intended output results. The cloud simulation infrastructure of this contribution is capable of hosting different simulations with the ability to be cloned as cloud services. The simulator example used here mimics the process of a distillation column to be seen as a widely used plant in several industrial applications. The cloud simulation core embedded in the cloud environment is fully independent from the developed user-interface of the simulator meaning that the cloud simulator can be connected to any user-interface. This allows simulation users such as process control and alarm management designers to connect to the cloud simulator in order to design, develop and experiment their systems on a “pay-as-you-go” basis as it is the case of most cloud computing services, aimed at providing computing services as utilities like water and electricity. For coding convenience, Windows Azure was selected for both developing the cloud simulation and hosting it in the cloud because of the fact that the source code of the desktop simulator is already available in C# based on dot Net technology. From a software technical point of view, UML graphical notations were applied in order to express the software requirement specifications of the distributed cloud simulation, representing a widespread technology in the object-oriented design and analysis.展开更多
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50725413)supported by the National Natural Science Foundation of China+2 种基金Project (CQ CSTC,2010BB4301)supported by National Science Foundation of Chongqing, ChinaProject (CSTC2009AB4008) supported by Chongqing Sci & Tech Development Program, ChinaProject (2010CSTC-HDLS)supported by Chongqing Sci & Tech Commission, China
文摘A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.
基金Project supported by the National Natural Science Foundation of China (No. 20173054).
文摘A universal simulator capable of simulating virtually any user-defined electrochemical/chemical problems in one-dimensional diffusion geometry was developed based on an exponentially expanding grid modification of the existing network approach. Some generalized reaction-diffusion governing equations of an arbitrary electrochemical/chemical process were derived, and program controlled automatic generation of the corresponding PSPICE netlist file was realized. On the basis of the above techniques, a universal simulator package was realized, which is capable of dealing with arbitrarily complex electrochemical/chemical problems with one-dimensional diffusion geometry such as planar diffusion, spherical diffusion, cylindrical diffusion and rotational disk diffusion-convection processes. The building of such a simulator is easy and thus it would be very convenient to have it updated for simulations of newly raised electrochemical problems.
文摘This paper shows how a desktop simulation can be migrated into its cloud equivalence using Windows Azure. It is undeniable that simulators are expensive and cost-intensive regarding maintenance and upgrading, and thus, it is not always feasible to buy such a simulator. Therefore, it will be of great significance if we have an approach, which provides simulators with services through the Internet with the aim of making them accessible from anywhere and at any time. That is, researchers and developers can focus on their actual researches and experiments and the intended output results. The cloud simulation infrastructure of this contribution is capable of hosting different simulations with the ability to be cloned as cloud services. The simulator example used here mimics the process of a distillation column to be seen as a widely used plant in several industrial applications. The cloud simulation core embedded in the cloud environment is fully independent from the developed user-interface of the simulator meaning that the cloud simulator can be connected to any user-interface. This allows simulation users such as process control and alarm management designers to connect to the cloud simulator in order to design, develop and experiment their systems on a “pay-as-you-go” basis as it is the case of most cloud computing services, aimed at providing computing services as utilities like water and electricity. For coding convenience, Windows Azure was selected for both developing the cloud simulation and hosting it in the cloud because of the fact that the source code of the desktop simulator is already available in C# based on dot Net technology. From a software technical point of view, UML graphical notations were applied in order to express the software requirement specifications of the distributed cloud simulation, representing a widespread technology in the object-oriented design and analysis.