In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a ...In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin's T2 H statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.展开更多
传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted stati...传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。展开更多
文摘In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin's T2 H statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.
文摘传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。