Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion...Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results, For this reason, we have done many experi- ments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 ℃ for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO^+/M^+) and hydroxide (e.g., MO^+/M^+) productivity is variable between runs, the (MO^+/M^+)/(CeO^+/Ce^+) and (MOH^+/M^+)/(CeO^+/Ce^+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with rec- ommended values of international rock reference standards with a relative error of 〈8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save 〉60% of time (e.g., 〈24 h vs. 〉60 h).展开更多
Since the frst pair of BeiDou satellites was deployed in 2000,China has made continuous eforts to establish its own independent BeiDou Navigation Satellite System(BDS)to provide the regional radio determination satell...Since the frst pair of BeiDou satellites was deployed in 2000,China has made continuous eforts to establish its own independent BeiDou Navigation Satellite System(BDS)to provide the regional radio determination satellite service as well as regional and global radio navigation satellite services,which rely on the high quality of orbit and clock products.This article summarizes the achievements in the precise orbit determination(POD)of BDS satellites in the past decade with the focus on observation and orbit dynamic models.First,the disclosed metadata of BDS satellites is presented and the contribution to BDS POD is addressed.The complete optical properties of the satellite bus as well as solar panels are derived based on the absorbed parameters as well the material properties.Secondly,the status and tracking capabilities of the L-band data from accessible ground networks are presented,while some low earth orbiter satellites with onboard BDS tracking capability are listed.The topological structure and measurement scheme of BDS Inter-Satellite-Link(ISL)data are described.After highlighting the progress on observation models as well as orbit perturbations for BDS,e.g.,phase center corrections,satellite attitude,and solar radiation pressure,diferent POD strategies used for BDS are summarized.In addition,the urgent requirement for error modeling of the ISL data is emphasized based on the analysis of the observation noises,and the incompatible characteristics of orbit and clock derived with L-band and ISL data are illuminated and discussed.The further researches on the improvement of phase center calibration and orbit dynamic models,the refnement of ISL observation models,and the potential contribution of BDS to the estimation of geodetic parameters based on L-band or ISL data are identifed.With this,it is promising that BDS can achieve better performance and provides vital contributions to the geodesy and navigation.展开更多
基金supported by National Natural Science Foundation of China(41130314 and 41630968)Chinese Academy of Sciences Innovation Grant(Y42217101L)+1 种基金Qingdao National Laboratory for Marine Science and Technology(2015ASKJ03)Marine Geological Process and Environment(U1606401)
文摘Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results, For this reason, we have done many experi- ments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 ℃ for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO^+/M^+) and hydroxide (e.g., MO^+/M^+) productivity is variable between runs, the (MO^+/M^+)/(CeO^+/Ce^+) and (MOH^+/M^+)/(CeO^+/Ce^+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with rec- ommended values of international rock reference standards with a relative error of 〈8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save 〉60% of time (e.g., 〈24 h vs. 〉60 h).
基金sponsored by the National Natural Science Foundation of China(41974035,42030109)Yong Elite Scientists Sponsorship Program by CAST(2018QNRC001).
文摘Since the frst pair of BeiDou satellites was deployed in 2000,China has made continuous eforts to establish its own independent BeiDou Navigation Satellite System(BDS)to provide the regional radio determination satellite service as well as regional and global radio navigation satellite services,which rely on the high quality of orbit and clock products.This article summarizes the achievements in the precise orbit determination(POD)of BDS satellites in the past decade with the focus on observation and orbit dynamic models.First,the disclosed metadata of BDS satellites is presented and the contribution to BDS POD is addressed.The complete optical properties of the satellite bus as well as solar panels are derived based on the absorbed parameters as well the material properties.Secondly,the status and tracking capabilities of the L-band data from accessible ground networks are presented,while some low earth orbiter satellites with onboard BDS tracking capability are listed.The topological structure and measurement scheme of BDS Inter-Satellite-Link(ISL)data are described.After highlighting the progress on observation models as well as orbit perturbations for BDS,e.g.,phase center corrections,satellite attitude,and solar radiation pressure,diferent POD strategies used for BDS are summarized.In addition,the urgent requirement for error modeling of the ISL data is emphasized based on the analysis of the observation noises,and the incompatible characteristics of orbit and clock derived with L-band and ISL data are illuminated and discussed.The further researches on the improvement of phase center calibration and orbit dynamic models,the refnement of ISL observation models,and the potential contribution of BDS to the estimation of geodetic parameters based on L-band or ISL data are identifed.With this,it is promising that BDS can achieve better performance and provides vital contributions to the geodesy and navigation.