不确定数据作为一种新型的数据模型,被广泛应用于金融、基于位置的服务、移动物体监测、传感器网络等许多类型应用领域.近年来出现的面向不确定数据的分析处理技术已成为数据库、数据挖掘等领域的研究热点.许多传统的数据挖掘技术已经...不确定数据作为一种新型的数据模型,被广泛应用于金融、基于位置的服务、移动物体监测、传感器网络等许多类型应用领域.近年来出现的面向不确定数据的分析处理技术已成为数据库、数据挖掘等领域的研究热点.许多传统的数据挖掘技术已经被扩展并应用到不确定数据的分析和管理,异常点检测是数据挖掘领域重要的技术,用来发现行为或特征不同于其他对象的数据对象.当数据对象的性质和行为明显区别于它的近邻时,则被为视为异常点.异常点检测在许多方面有着广泛的应用,如网络入侵检测、信用卡诈骗、环境监测等.该文研究不确定数据基于密度的局部异常点检测,每个不确定数据由几个离散的可能实例组成.首先,提出了基于特定不确定数据模型的局部异常点定义.为了能够快速地检测局部异常点,在不展开可能世界的前提下,提出了基础算法UDOL(Uncertain Density-based Local Outlier).然后,又提出在不精确计算概率的情况下,通过估计局部异常点因子的检测算法PUDOL(Pruning on Uncertain Density-based Local Outlier),可以有效地减少计算量.最后,通过大量的实验验证该文提出算法的性能.实验结果证明,该文所提出的算法是解决不确定数据基于密度的局部异常点检测的有效方法.展开更多
文摘不确定数据作为一种新型的数据模型,被广泛应用于金融、基于位置的服务、移动物体监测、传感器网络等许多类型应用领域.近年来出现的面向不确定数据的分析处理技术已成为数据库、数据挖掘等领域的研究热点.许多传统的数据挖掘技术已经被扩展并应用到不确定数据的分析和管理,异常点检测是数据挖掘领域重要的技术,用来发现行为或特征不同于其他对象的数据对象.当数据对象的性质和行为明显区别于它的近邻时,则被为视为异常点.异常点检测在许多方面有着广泛的应用,如网络入侵检测、信用卡诈骗、环境监测等.该文研究不确定数据基于密度的局部异常点检测,每个不确定数据由几个离散的可能实例组成.首先,提出了基于特定不确定数据模型的局部异常点定义.为了能够快速地检测局部异常点,在不展开可能世界的前提下,提出了基础算法UDOL(Uncertain Density-based Local Outlier).然后,又提出在不精确计算概率的情况下,通过估计局部异常点因子的检测算法PUDOL(Pruning on Uncertain Density-based Local Outlier),可以有效地减少计算量.最后,通过大量的实验验证该文提出算法的性能.实验结果证明,该文所提出的算法是解决不确定数据基于密度的局部异常点检测的有效方法.