The effect of pore water chemistry on anisotropic behavior of consolidation and shear strength of reconstituted Ariake clay has been investigated experimentally.Two types of chemicals added into the pore water of the ...The effect of pore water chemistry on anisotropic behavior of consolidation and shear strength of reconstituted Ariake clay has been investigated experimentally.Two types of chemicals added into the pore water of the soil for enhancing flocculation microstructure of soil particles are sodium chloride(salt)(NaCl),and calcium chloride(CaCl_(2));and two dispersants added are sodium triphosphate(Na_(5)-P_(3)O_(10))and sodium hexametaphosphate(Na_(6)P_(6)O_(18)),respectively.The concentrations of these chemicals in pore water were 2-3%.Degrees of anisotropy of the coefficient of consolidation and undrained shear strength decreased with adding NaCl and CaCl_(2),but increased with adding the dispersants.Degree of anisotropy also increased with one-dimensional(1D)deformation and the samples with dispersive additives had higher increase rate.It has been confirmed qualitatively by scanning electron microscopy(SEM)images that adding dispersive chemicals promoted the formation of dispersive microstructure and increased the degree of anisotropy,and the chemicals enhancing flocculent microstructure had an inverse effect.The possible application of the findings to underground construction has been discussed also.展开更多
Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and...Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.展开更多
基金Mr.A.Saito,technician at the Graduate School of Science and Engineering,Saga University,Japan and Mr.T.Shimizu,graduate of the Faculty of Science and Engineering,Saga University conducted the direct shear tests reported in this study.This work has been supported by the National Natural Science Foundation of China(NSFC)with a grant No.51578333the Grants-in-Aid for Scientific Research(KAKENHI)of the Japanese Society for the Promotion of Science(JSPS)with a grant number of 15K06212.
文摘The effect of pore water chemistry on anisotropic behavior of consolidation and shear strength of reconstituted Ariake clay has been investigated experimentally.Two types of chemicals added into the pore water of the soil for enhancing flocculation microstructure of soil particles are sodium chloride(salt)(NaCl),and calcium chloride(CaCl_(2));and two dispersants added are sodium triphosphate(Na_(5)-P_(3)O_(10))and sodium hexametaphosphate(Na_(6)P_(6)O_(18)),respectively.The concentrations of these chemicals in pore water were 2-3%.Degrees of anisotropy of the coefficient of consolidation and undrained shear strength decreased with adding NaCl and CaCl_(2),but increased with adding the dispersants.Degree of anisotropy also increased with one-dimensional(1D)deformation and the samples with dispersive additives had higher increase rate.It has been confirmed qualitatively by scanning electron microscopy(SEM)images that adding dispersive chemicals promoted the formation of dispersive microstructure and increased the degree of anisotropy,and the chemicals enhancing flocculent microstructure had an inverse effect.The possible application of the findings to underground construction has been discussed also.
文摘Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.