In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization schem...This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in $ L_{\rho _X }^2 $ with Borel probability measure.展开更多
The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that s...The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.展开更多
Approximation by algebraic polynomials is an important direction in approximation theory. Mi(i=1, 2,…) denote the absolute constants, ω(f,δ) is the modulus of continuity. Let H_n be the set of algebraic polynomials...Approximation by algebraic polynomials is an important direction in approximation theory. Mi(i=1, 2,…) denote the absolute constants, ω(f,δ) is the modulus of continuity. Let H_n be the set of algebraic polynomials of degree ≤n. Timan展开更多
In this work we slwly linear polynomial operators preserving some consecutive i-convexities and leaving in-verant the polynomtals up to a certain degree. First we study the existence of an incompatibility between the ...In this work we slwly linear polynomial operators preserving some consecutive i-convexities and leaving in-verant the polynomtals up to a certain degree. First we study the existence of an incompatibility between the conservation of cenain i-cotivexities and the invariance of a space of polynomials. Interpolation properties are obtained and a theorem by Berens and DcVore about the Bernstein's operator ts extended. Finally, from these results a genera'ized Bernstein's operator is obtained.展开更多
研究了亚纯函数与其差分算子分担多项式的唯一性问题,证明了:设f是一个有穷级非常数亚纯函数,p(z)(■0)是一个多项式.如果f,△_cf与△_c^2f CM分担∞,p(z),则f≡△_cf或f(z)=e^(Az+B)+b,其中p(z)≡b≠0,A≠0满足e^(Ac)=1.本文结果是对Ch...研究了亚纯函数与其差分算子分担多项式的唯一性问题,证明了:设f是一个有穷级非常数亚纯函数,p(z)(■0)是一个多项式.如果f,△_cf与△_c^2f CM分担∞,p(z),则f≡△_cf或f(z)=e^(Az+B)+b,其中p(z)≡b≠0,A≠0满足e^(Ac)=1.本文结果是对Chang, Fang(Chang J M, Fang M L. Uniqueness of entire functions and fixed points [J]. Kodai Math J, 2002, 25(1):309-320.)结果的差分模拟,并且完整回答了Chen, Chen(Chen B Q, Chen Z X, Li S. Uniqueness theorems on entire functions and their difference operators or shifts [J]. Abstr Appl Anal, 2012,Art. ID 906893, 8 pp.)的问题.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable ...By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.展开更多
The boundary value problem with a spectral parameter in the boundary conditions for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the properties of the transformation operators for such op...The boundary value problem with a spectral parameter in the boundary conditions for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the properties of the transformation operators for such operators, the asymptotic formulas for eigenvalues of the boundary value problem are obtained.展开更多
In the present paper, we obtain estimations of convergence rate derivatives of the q-Bernstein polynomials Bn (f, qn ;x) approximating to f' (x) as n →∞, which is a general- ization of that relating the classic...In the present paper, we obtain estimations of convergence rate derivatives of the q-Bernstein polynomials Bn (f, qn ;x) approximating to f' (x) as n →∞, which is a general- ization of that relating the classical case qn = 1. On the other hand, we study the conver- gence properties of derivatives of the limit q-Bernstein operators B∞(f, q;x) as q→1-.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
文摘This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in $ L_{\rho _X }^2 $ with Borel probability measure.
基金Supported by the National Natural Science Foundation of China (10371082)Chinese National Natural Science Foundation Committee Tianyuan Foundation (10526040)Guangzhou University Doctor Foundation (WXF-1001)
文摘The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.
文摘Approximation by algebraic polynomials is an important direction in approximation theory. Mi(i=1, 2,…) denote the absolute constants, ω(f,δ) is the modulus of continuity. Let H_n be the set of algebraic polynomials of degree ≤n. Timan
基金This work was supported by Junta de Andalucia. Grupo de investigacion Matematica Aplioada. Codao 1107
文摘In this work we slwly linear polynomial operators preserving some consecutive i-convexities and leaving in-verant the polynomtals up to a certain degree. First we study the existence of an incompatibility between the conservation of cenain i-cotivexities and the invariance of a space of polynomials. Interpolation properties are obtained and a theorem by Berens and DcVore about the Bernstein's operator ts extended. Finally, from these results a genera'ized Bernstein's operator is obtained.
文摘研究了亚纯函数与其差分算子分担多项式的唯一性问题,证明了:设f是一个有穷级非常数亚纯函数,p(z)(■0)是一个多项式.如果f,△_cf与△_c^2f CM分担∞,p(z),则f≡△_cf或f(z)=e^(Az+B)+b,其中p(z)≡b≠0,A≠0满足e^(Ac)=1.本文结果是对Chang, Fang(Chang J M, Fang M L. Uniqueness of entire functions and fixed points [J]. Kodai Math J, 2002, 25(1):309-320.)结果的差分模拟,并且完整回答了Chen, Chen(Chen B Q, Chen Z X, Li S. Uniqueness theorems on entire functions and their difference operators or shifts [J]. Abstr Appl Anal, 2012,Art. ID 906893, 8 pp.)的问题.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.
文摘The boundary value problem with a spectral parameter in the boundary conditions for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the properties of the transformation operators for such operators, the asymptotic formulas for eigenvalues of the boundary value problem are obtained.
文摘In the present paper, we obtain estimations of convergence rate derivatives of the q-Bernstein polynomials Bn (f, qn ;x) approximating to f' (x) as n →∞, which is a general- ization of that relating the classical case qn = 1. On the other hand, we study the conver- gence properties of derivatives of the limit q-Bernstein operators B∞(f, q;x) as q→1-.