This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally an...This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally and locally, which evidently reduces the number of unknown variables and hence increases the computational efficiency. The notion of 'robust quadratic stability' is inducted to meet the global properties, including the robust stability and robust performance, while the regional pole placement scheme together with the adoption of a model matching structure is involved to satisfy the dynamic performance, including limiting the 'fast poles'. In order to reduce the conservatism, the full block multiplier is employed to depict the properties, with all specifications generalized in integral quadratic constraint frame and finally transformed into linear matrix inequalities for tractable solutions through convex optimization. Simulation results validate the performance of the designed robust LPV autopilot and the proposed framework control method integrating with the full block multiplier approach and the regional pole placement scheme, and demonstrate the efficiency of the algorithm. An efficient algorithm for the air defense missile is proposed to satisfy the required global stability and local dynamical properties by a varying controller according to the flight conditions, and shows sufficient promise in the computational efficiency and the real-time performance of the missile-borne computer system.展开更多
We performed on paleomagnetic investigation of the Upper Cretaceous red sandstones collected from Fujiau and Guangdong provinces. Significant characteristic directions were isolated by principal comPonent analysis fro...We performed on paleomagnetic investigation of the Upper Cretaceous red sandstones collected from Fujiau and Guangdong provinces. Significant characteristic directions were isolated by principal comPonent analysis from 22 of 25 and 9 of 14 sampling sites iu Fujian and Guangdong,respectively. Maximum concentration of global mean directions every province is achieved at 70 %and complete (100 % ) untilting for Fujian and Guangdong, respectively. We regarded these mean directions as the Late Cretaceous paleomagnetic directions and calculated virtual geomagnetic poles (VGPs); Fujian, Lat. /Lon. = 79. 4°N/210. 3°E (α95= 5. 1°) and Guangdong, Lat. /Lon. = 80. 1°N/193. 4°E (α95=8. 0°). These two VGPs are nearly equal to each other and to a mean VGP from Sichuan Province reported previously. This observation suggests no relative movement among three regions, Fujian, Guangdong and Sichuan, since the Late Cretaceous. Two VGPs from this study are significantly different from previously reported VGPs from the same regions. Further systematic paleomagnetic works are needed to clarify this difference of VGP Positions.展开更多
基金supported by the National Natural Science Foundation of China(11532002)
文摘This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally and locally, which evidently reduces the number of unknown variables and hence increases the computational efficiency. The notion of 'robust quadratic stability' is inducted to meet the global properties, including the robust stability and robust performance, while the regional pole placement scheme together with the adoption of a model matching structure is involved to satisfy the dynamic performance, including limiting the 'fast poles'. In order to reduce the conservatism, the full block multiplier is employed to depict the properties, with all specifications generalized in integral quadratic constraint frame and finally transformed into linear matrix inequalities for tractable solutions through convex optimization. Simulation results validate the performance of the designed robust LPV autopilot and the proposed framework control method integrating with the full block multiplier approach and the regional pole placement scheme, and demonstrate the efficiency of the algorithm. An efficient algorithm for the air defense missile is proposed to satisfy the required global stability and local dynamical properties by a varying controller according to the flight conditions, and shows sufficient promise in the computational efficiency and the real-time performance of the missile-borne computer system.
文摘We performed on paleomagnetic investigation of the Upper Cretaceous red sandstones collected from Fujiau and Guangdong provinces. Significant characteristic directions were isolated by principal comPonent analysis from 22 of 25 and 9 of 14 sampling sites iu Fujian and Guangdong,respectively. Maximum concentration of global mean directions every province is achieved at 70 %and complete (100 % ) untilting for Fujian and Guangdong, respectively. We regarded these mean directions as the Late Cretaceous paleomagnetic directions and calculated virtual geomagnetic poles (VGPs); Fujian, Lat. /Lon. = 79. 4°N/210. 3°E (α95= 5. 1°) and Guangdong, Lat. /Lon. = 80. 1°N/193. 4°E (α95=8. 0°). These two VGPs are nearly equal to each other and to a mean VGP from Sichuan Province reported previously. This observation suggests no relative movement among three regions, Fujian, Guangdong and Sichuan, since the Late Cretaceous. Two VGPs from this study are significantly different from previously reported VGPs from the same regions. Further systematic paleomagnetic works are needed to clarify this difference of VGP Positions.