在城市轨道交通中,地下工程往往需要穿越上部建筑物,为了保证建筑物安全正常使用,托换技术已成为解决城市建设施工的一种有效方法。在饱和黄土地区,由于黄土特殊的工程性质,桩基托换工程实例相对较少。以兰州市轨道交通1号线地铁隧道下...在城市轨道交通中,地下工程往往需要穿越上部建筑物,为了保证建筑物安全正常使用,托换技术已成为解决城市建设施工的一种有效方法。在饱和黄土地区,由于黄土特殊的工程性质,桩基托换工程实例相对较少。以兰州市轨道交通1号线地铁隧道下穿既有市政桥梁为工程背景,详细介绍桩基托换设计方案,并建立三维有限元模型,进行数值分析。研究隧道开挖和切桩过程中地表沉降、桩基沉降和托换桩基受力机制,验证托换方案的可行性。研究结果表明:地表最大沉降为10.5 mm,桩基最大沉降量为9.7 mm,相邻桩基沉降差最大值为2.2 mm,满足相关规范要求。托换后桩底轴力为1 143.9 k N,小于单桩设计承载力4 739 k N,在初始阶段、新增承台及桩基、切除左右隧道内桩基及最后阶段衬砌左右隧道,托换桩基承载力均满足要求。展开更多
文摘在城市轨道交通中,地下工程往往需要穿越上部建筑物,为了保证建筑物安全正常使用,托换技术已成为解决城市建设施工的一种有效方法。在饱和黄土地区,由于黄土特殊的工程性质,桩基托换工程实例相对较少。以兰州市轨道交通1号线地铁隧道下穿既有市政桥梁为工程背景,详细介绍桩基托换设计方案,并建立三维有限元模型,进行数值分析。研究隧道开挖和切桩过程中地表沉降、桩基沉降和托换桩基受力机制,验证托换方案的可行性。研究结果表明:地表最大沉降为10.5 mm,桩基最大沉降量为9.7 mm,相邻桩基沉降差最大值为2.2 mm,满足相关规范要求。托换后桩底轴力为1 143.9 k N,小于单桩设计承载力4 739 k N,在初始阶段、新增承台及桩基、切除左右隧道内桩基及最后阶段衬砌左右隧道,托换桩基承载力均满足要求。