For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its...By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations.