Problems related to the design of observer-based parametric fault detection(PFD) systems are studied. The core of our study is to first describe the faults occurring in systemactuators, sensors and components in the f...Problems related to the design of observer-based parametric fault detection(PFD) systems are studied. The core of our study is to first describe the faults occurring in systemactuators, sensors and components in the form of additive parameter deviations, then to transformthe PFD problems into a similar additive fault setup, based on which an optimal observer-basedoptimization fault detection approach is proposed. A constructive solution optimal in the sense ofminimizing a certain performance index is developed. The main results consist of defining parametricfault detectability, formulating a PFD optimization problem and its solution. A numerical exampleto demonstrate the effectiveness of the proposed approach is provided.展开更多
为了简化模拟线性电路故障诊断定位阶段的工作量,本文提出了一种确定故障元件存在范围的方法。即在十分现实的 K 故障假设下,去确定能代表电路所有元件并给出在 K 故障假设下的故障诊断议程的唯一解的一组元件——最优可测试元件组,使...为了简化模拟线性电路故障诊断定位阶段的工作量,本文提出了一种确定故障元件存在范围的方法。即在十分现实的 K 故障假设下,去确定能代表电路所有元件并给出在 K 故障假设下的故障诊断议程的唯一解的一组元件——最优可测试元件组,使故障定位工作只局限于该组元件,而不必对电路所有元件进行。从而该方法构成了故障定位的第一步,且与故障定位方法无关。本方法是基于电路的可测试值计算和规范式不确定性组的确定,它在可测试性与不确定性组概念中具有严格的理论基础,其可测试性计算可直接从参数类型故障诊断技术中推得。展开更多
文摘Problems related to the design of observer-based parametric fault detection(PFD) systems are studied. The core of our study is to first describe the faults occurring in systemactuators, sensors and components in the form of additive parameter deviations, then to transformthe PFD problems into a similar additive fault setup, based on which an optimal observer-basedoptimization fault detection approach is proposed. A constructive solution optimal in the sense ofminimizing a certain performance index is developed. The main results consist of defining parametricfault detectability, formulating a PFD optimization problem and its solution. A numerical exampleto demonstrate the effectiveness of the proposed approach is provided.
文摘为了简化模拟线性电路故障诊断定位阶段的工作量,本文提出了一种确定故障元件存在范围的方法。即在十分现实的 K 故障假设下,去确定能代表电路所有元件并给出在 K 故障假设下的故障诊断议程的唯一解的一组元件——最优可测试元件组,使故障定位工作只局限于该组元件,而不必对电路所有元件进行。从而该方法构成了故障定位的第一步,且与故障定位方法无关。本方法是基于电路的可测试值计算和规范式不确定性组的确定,它在可测试性与不确定性组概念中具有严格的理论基础,其可测试性计算可直接从参数类型故障诊断技术中推得。