A calix[8]arene-bonded gel silica stationary phase(DCABS) was prepared by using coupling reagent(KH560). Its structure was characterized by FTIR, elemental analysis and thermal analysis. The chromatographic performanc...A calix[8]arene-bonded gel silica stationary phase(DCABS) was prepared by using coupling reagent(KH560). Its structure was characterized by FTIR, elemental analysis and thermal analysis. The chromatographic performance of DCABS was studied by using different solutes as probes and stationary phases as reference. The results show that the new material has an excellent reversed-phase chromatographic property. The new bonded phase can provide various sites for analytes, such as the hydrophobic interaction, hydrogen-bonding, π-π, electrostatic interactions. Meanwhile, it was observed that the chromatographic performance of DCABS is partially different from CABS because of elimination of the butyl groups.展开更多
Three new silica gel modified with calix[4]arene derivatives (p-tert-butyl-calix[4]arene (PC4), calix[4]arene (C4) and calix[4]arene sulfonate (C4S)) have been prepared via modification of activated silica gel...Three new silica gel modified with calix[4]arene derivatives (p-tert-butyl-calix[4]arene (PC4), calix[4]arene (C4) and calix[4]arene sulfonate (C4S)) have been prepared via modification of activated silica gel with toluene 2,4-di-iso-cyanate (TDI) as linker in tow step. The modified silica were characterized by fourier transform infrared spectroscopy (FT1R), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalent attached to the silica. Scanning electron microscope SEM and Brunauer-Emmett-Teller BET analysis have been done to get information about the sample's surface shape and area. SEM and BET analysis reveal that the modified silica are in the range of microporous adsorbent.展开更多
目的合成对叔丁基杯[4]芳烃酸偶合低相对分子质量聚乙烯亚胺聚合物作为非病毒转基因载体,并评价其毒性、压缩DNA的能力,携带报告基因转染细胞的能力。方法采用新方法合成对叔丁基杯[4]芳烃酸偶合聚乙烯亚胺聚合物,通过核磁共振方法表征...目的合成对叔丁基杯[4]芳烃酸偶合低相对分子质量聚乙烯亚胺聚合物作为非病毒转基因载体,并评价其毒性、压缩DNA的能力,携带报告基因转染细胞的能力。方法采用新方法合成对叔丁基杯[4]芳烃酸偶合聚乙烯亚胺聚合物,通过核磁共振方法表征。将合成的新聚合物与DNA混合,得到新聚合物/DNA复合物,用琼脂糖电泳试验测定不同N/P比值形成复合物时对质粒DNA电泳的阻滞情况,评价其压缩DNA能力。透射电镜法检测复合物的大小,MTT法检测其对细胞的毒性作用,使用新聚合物携带报告基因转染细胞,并与PEI25000比较转染率。结果新聚合物压缩质粒DNA的能力随N/P比值增大而增强,在N/P比为6时可以完全阻滞质粒DNA的电泳,在N/P比为60时,复合物粒径约291 nm,复合物的表面电荷约14.6 m V。细胞毒性试验表明新聚合物与PEI25000相比毒性明显下降,携带报告基因转染MCF-7细胞转染效率与PEI25000相近。结论对叔丁基杯[4]芳烃酸聚乙烯亚胺新聚合物具有较强压缩质粒DNA能力,对细胞毒性低,转染效率高,是一种可应用于基因治疗的新型非病毒载体。展开更多
文摘A calix[8]arene-bonded gel silica stationary phase(DCABS) was prepared by using coupling reagent(KH560). Its structure was characterized by FTIR, elemental analysis and thermal analysis. The chromatographic performance of DCABS was studied by using different solutes as probes and stationary phases as reference. The results show that the new material has an excellent reversed-phase chromatographic property. The new bonded phase can provide various sites for analytes, such as the hydrophobic interaction, hydrogen-bonding, π-π, electrostatic interactions. Meanwhile, it was observed that the chromatographic performance of DCABS is partially different from CABS because of elimination of the butyl groups.
文摘Three new silica gel modified with calix[4]arene derivatives (p-tert-butyl-calix[4]arene (PC4), calix[4]arene (C4) and calix[4]arene sulfonate (C4S)) have been prepared via modification of activated silica gel with toluene 2,4-di-iso-cyanate (TDI) as linker in tow step. The modified silica were characterized by fourier transform infrared spectroscopy (FT1R), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalent attached to the silica. Scanning electron microscope SEM and Brunauer-Emmett-Teller BET analysis have been done to get information about the sample's surface shape and area. SEM and BET analysis reveal that the modified silica are in the range of microporous adsorbent.
文摘目的合成对叔丁基杯[4]芳烃酸偶合低相对分子质量聚乙烯亚胺聚合物作为非病毒转基因载体,并评价其毒性、压缩DNA的能力,携带报告基因转染细胞的能力。方法采用新方法合成对叔丁基杯[4]芳烃酸偶合聚乙烯亚胺聚合物,通过核磁共振方法表征。将合成的新聚合物与DNA混合,得到新聚合物/DNA复合物,用琼脂糖电泳试验测定不同N/P比值形成复合物时对质粒DNA电泳的阻滞情况,评价其压缩DNA能力。透射电镜法检测复合物的大小,MTT法检测其对细胞的毒性作用,使用新聚合物携带报告基因转染细胞,并与PEI25000比较转染率。结果新聚合物压缩质粒DNA的能力随N/P比值增大而增强,在N/P比为6时可以完全阻滞质粒DNA的电泳,在N/P比为60时,复合物粒径约291 nm,复合物的表面电荷约14.6 m V。细胞毒性试验表明新聚合物与PEI25000相比毒性明显下降,携带报告基因转染MCF-7细胞转染效率与PEI25000相近。结论对叔丁基杯[4]芳烃酸聚乙烯亚胺新聚合物具有较强压缩质粒DNA能力,对细胞毒性低,转染效率高,是一种可应用于基因治疗的新型非病毒载体。