Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increa...Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.展开更多
The Beijing“Coal to Electricity”program provides a unique opportunity to explore air quality impacts by replacing residential coal burning with electrical appliances.In this study,the atmospheric ROS(Gas-phase ROS a...The Beijing“Coal to Electricity”program provides a unique opportunity to explore air quality impacts by replacing residential coal burning with electrical appliances.In this study,the atmospheric ROS(Gas-phase ROS and Particle-phase ROS,abbreviated to G-ROS and P-ROS)were measured by an online instrument in parallel with concurrent PM_(2.5) sample collections analyzed for chemical composition and cellular ROS in a baseline year(Coal Use Year-CUY)and the first year following implementation of the“Coal to Electricity”program(Coal Ban Year-CBY).The results showed PM_(2.5) concentrations had no significant difference between the two sampling periods,but the activities of G-ROS,P-ROS,and cellular ROS in CBY were 8.72 nmol H_(2)O_(2)/m^(3),9.82 nmol H 2 O 2/m 3,and 2045.75μg UD/mg PM higher than in CUY.Six sources were identified by factor-analysis from the chemical components of PM_(2.5).Secondary sources(SECs)were the dominant source of PM_(2.5) in the two periods,with 15.90%higher contribution in CBY than in CUY.Industrial Emission&Coal Combustion sources(Ind.&CCs),mainly from regional transport,also increased significantly in CBY.The contributions of Aged Sea Salt&Residential Burning sources to PM_(2.5) decreased 5.31% from CUY to CBY.The correlation results illustrated that Ind.&CCs had significant positive correlations with atmospheric ROS,and SECs significantly associated with cellular ROS,especially nitrates(r=0.626,p=0.000).Therefore,the implementation of the“Coal to Electricity”program reduced PM_(2.5) contributions from coal and biomass combustion,but had little effect on the improvement of atmospheric and cellular ROS.展开更多
This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids f...This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.展开更多
文摘Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.
基金supported by the National Natural Science Foundation of China(NSFC)(No.41877310)partly by the National Key Research and Development Program of China(No.2016YFC0503600).
文摘The Beijing“Coal to Electricity”program provides a unique opportunity to explore air quality impacts by replacing residential coal burning with electrical appliances.In this study,the atmospheric ROS(Gas-phase ROS and Particle-phase ROS,abbreviated to G-ROS and P-ROS)were measured by an online instrument in parallel with concurrent PM_(2.5) sample collections analyzed for chemical composition and cellular ROS in a baseline year(Coal Use Year-CUY)and the first year following implementation of the“Coal to Electricity”program(Coal Ban Year-CBY).The results showed PM_(2.5) concentrations had no significant difference between the two sampling periods,but the activities of G-ROS,P-ROS,and cellular ROS in CBY were 8.72 nmol H_(2)O_(2)/m^(3),9.82 nmol H 2 O 2/m 3,and 2045.75μg UD/mg PM higher than in CUY.Six sources were identified by factor-analysis from the chemical components of PM_(2.5).Secondary sources(SECs)were the dominant source of PM_(2.5) in the two periods,with 15.90%higher contribution in CBY than in CUY.Industrial Emission&Coal Combustion sources(Ind.&CCs),mainly from regional transport,also increased significantly in CBY.The contributions of Aged Sea Salt&Residential Burning sources to PM_(2.5) decreased 5.31% from CUY to CBY.The correlation results illustrated that Ind.&CCs had significant positive correlations with atmospheric ROS,and SECs significantly associated with cellular ROS,especially nitrates(r=0.626,p=0.000).Therefore,the implementation of the“Coal to Electricity”program reduced PM_(2.5) contributions from coal and biomass combustion,but had little effect on the improvement of atmospheric and cellular ROS.
基金National Natural Science Foundation of China (Grant 40473021) the National 973- Project of the Ministry of Science and Technology of China (2003CB214600) the Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, and the jointed project of Max-Planck-Institute of Society and Chinese Academy of Sciences in Max-Planck-Institute of Nuclear Physics,Heidelberg, Germany.
文摘This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.