Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certi...Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.展开更多
Group Ⅲ-nitride material system possesses some unique properties,such as large spectrum coverage from infrared to deep ultraviolet,wide energy band gap,high electron saturation velocity,high electrical breakdown fiel...Group Ⅲ-nitride material system possesses some unique properties,such as large spectrum coverage from infrared to deep ultraviolet,wide energy band gap,high electron saturation velocity,high electrical breakdown field,and strong polarization effect,which enables the big family has a very wide application range from optoelectronic to power electronic area.Furthermore,the successful growth of GaN-related III-nitride material on large size silicon substrate enable the above applications easily realize the commercialization,because of the cost-effective device fabrication on the platform of Si-based integrated circuits.In this article,the progress and development of the GaN-based materials and light-emitting diodes grown on Si substrate were summarized,in which some key issues regarding to the material growth and device fabrication were reviewed.展开更多
基金supported by the Doctoral Program of Higher Education(20130142120075)the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)National Key Research and Development Program of China(Grant No.2016YFB0700702)
文摘Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
基金supported by the National Basic Research Program of China (2010CB923200 and 2011CB301903)the National High Technology Research and Development Program of China (2011AA03A101)+2 种基金the National Natural Science Foundation of China (61274039 and 51177175)Ph.D. Programs Foundation of Ministry of Education of China (20110171110021)the Foundation of the Key Technologies R&D Program of Guangdong Province (2010A081002005)
文摘Group Ⅲ-nitride material system possesses some unique properties,such as large spectrum coverage from infrared to deep ultraviolet,wide energy band gap,high electron saturation velocity,high electrical breakdown field,and strong polarization effect,which enables the big family has a very wide application range from optoelectronic to power electronic area.Furthermore,the successful growth of GaN-related III-nitride material on large size silicon substrate enable the above applications easily realize the commercialization,because of the cost-effective device fabrication on the platform of Si-based integrated circuits.In this article,the progress and development of the GaN-based materials and light-emitting diodes grown on Si substrate were summarized,in which some key issues regarding to the material growth and device fabrication were reviewed.