Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough ...Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simply- connected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.展开更多
During radial-axial ring rolling process, cooperative strategy of the radial axial feed is critical for dimensional accuracy and thermo mechanical parameters distribution of the formed ring. In order to improve the co...During radial-axial ring rolling process, cooperative strategy of the radial axial feed is critical for dimensional accuracy and thermo mechanical parameters distribution of the formed ring. In order to improve the comprehensive quality of the ring parts, response surface method (RSM) is employed for the first time to optimize the cooperative feed strategy for radial-axial ring rolling process by combining it with an improved and verified 3D coupled thermo-mechanical finite element model. The feed trajectory is put forward to describe cooperative relationship of the radial- axial feed and three variables are designed based on the feed trajectory. In order to achieve multi- objective optimization, four responses including thermo mechanical parameters distribution and rolling force are proposed. Based on the FEM results, RSM is used to establish a response model to depict the function relationship between the objective response and design variables. Through this approximate model, effects of different variables on ring rolling process are analyzed connect- edly and optimal feed strategy is obtained by resorting to the optimal chart specific to a constraint condition.展开更多
The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during ...The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during flight.The first-order fundamental frequencies and their corresponding damping characteristics of the vertical stabilizer skin structure tow-steered by automatic fiber placement technique were optimized with the parameterized trajectories and plies as design variables.Firstly,the vibration and damping numerical models were derived based on Kirchhoff laminate theory,the Rayleigh-Ritz method,and the Strain Energy Method.Then the optimization model was developed by adopting the self-adaptive Differential Evolution Multi-objective optimization algorithm and incorporating the solution method of Pareto Front.The constraints of this optimization model considered the experimentally obtained minimum turning radius of prepregs tow-steered in automatic fiber placement process obtained from experimental tests.Finally,the comparison of numerical simulation results was conducted for the optimized trajectories and the conventional straight trajectories under various boundary conditions,and the numerical results were partially validated through damping and frequency tests.The results indicate the vibration characteristics of the composite vertical stabilizer skin structure can be enhanced to a large extent by optimizing fiber trajectories,and the enhancement percentage is affected by the boundary conditions of the actual structure.展开更多
Ride-sharing systems should combine environ- mental protection (through a reduction of fossil fuel usage), socialization, and security. Encouraging people to use ride- sharing systems by satisfying their demands for...Ride-sharing systems should combine environ- mental protection (through a reduction of fossil fuel usage), socialization, and security. Encouraging people to use ride- sharing systems by satisfying their demands for safety, pri- vacy and convenience is challenging. Most previous works on this topic have focused on finding a fixed path between the driver and the riders either based solely on their loca- tions or using social information. The drivers' and riders' lack of options to change or compute the path according to their own preferences and requirements is problematic. With the advancement of mobile social networking technologies, it is necessary to reconsider the principles and desired character- istics of ride-sharing systems. In this paper, we formalized the ride-sharing problem as a multi source-destination path plan- ning problem. An objective function that models different ob- jectives in a unified framework was developed. Moreover, we provide a similarity model, which can reflect the personal preferences of the rides and utilize social media to obtain the current interests of the riders and drivers. The model also al- lows each driver to generate sub-optimal paths according to his own requirements by suitably adjusting the weights. Two case studies have shown that our system has the potential to find the best possible match and computes the multiple opti- mal paths against different user-defined objective functions.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,...The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.展开更多
Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a ...Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units which produce either heat or power exclusively. Hence the economic dispatch problem for these plants optimizing the fuel cost is quite complex and several classical and meta-heuristic algo- rithms have been proposed earlier. This paper applies the invasive weed optimization algorithm which is inspired by the ecological process of weed colonization and distribu- tion. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over earlier ones.展开更多
As a crucial weapon in the sea battle,anti-ship missiles generally employ a sea-skimming penetration strategy to reduce the probability of being detected by the target radar,which greatly increases the risk of touchin...As a crucial weapon in the sea battle,anti-ship missiles generally employ a sea-skimming penetration strategy to reduce the probability of being detected by the target radar,which greatly increases the risk of touching water caused by sensor errors or random sea conditions.To alleviate the large impact load by high-velocity water touching,a novel anti-ship missile body configuration is proposed in this paper,which is inspired by the idea of hydroplaning.A parametric geometry model is first developed to modify the configuration of the anti-ship missile body.Subsequently,a structured arbitrary Lagrange-Eulerian based Fluid-Structure Interaction(FSI)model is established to analyze the kinematics parameters of the missile body during the hydroplaning process.A missile body configuration optimization problem is then formulated to minimize the impact load considering several constraints,e.g.,horizontal velocity loss,pitch angle after touching water,and inside capacity for payload.Due to the time-consuming FSI simulation,a Kriging-assisted constrained differential evolution method is utilized to optimize the missile body configuration for reducing the impact load.During the optimization process,radial basis function and Kriging are combined with evolutionary operators to lead the search to the vicinity of the optimum rapidly.The result shows that the proposed missile body configuration can reduce the impact load by 18.8%compared with the ordinary configuration.Additionally,the optimized configuration can further yield a 17.4%impact load decrease subject to all the constraints and avoid structural damage by the high-velocity water touching,which demonstrates the effectiveness and practicability of the proposed anti-ship missile body configuration and corresponding optimization framework for reducing the impact load.展开更多
An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact thro...An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architec- ture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertain- ties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candi- dates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.展开更多
文摘Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simply- connected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20126102120022) of ChinaNorthwestern Polytechnical University(NPU) Foundation for Fundamental Research(NPU-FFR-JC200822) of China for the support given to the research
文摘During radial-axial ring rolling process, cooperative strategy of the radial axial feed is critical for dimensional accuracy and thermo mechanical parameters distribution of the formed ring. In order to improve the comprehensive quality of the ring parts, response surface method (RSM) is employed for the first time to optimize the cooperative feed strategy for radial-axial ring rolling process by combining it with an improved and verified 3D coupled thermo-mechanical finite element model. The feed trajectory is put forward to describe cooperative relationship of the radial- axial feed and three variables are designed based on the feed trajectory. In order to achieve multi- objective optimization, four responses including thermo mechanical parameters distribution and rolling force are proposed. Based on the FEM results, RSM is used to establish a response model to depict the function relationship between the objective response and design variables. Through this approximate model, effects of different variables on ring rolling process are analyzed connect- edly and optimal feed strategy is obtained by resorting to the optimal chart specific to a constraint condition.
基金co-supported by the National Natural Science Foundation of China(Nos.51875159,52175311,52175133,12102115,52005446)the Fok Ying Tung Education Foundation,China(No.171046)the Fundamental Research Funds for the Central Universities,China(Nos.JZ2021HGTA0178,JZ2020HGQA0197)。
文摘The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during flight.The first-order fundamental frequencies and their corresponding damping characteristics of the vertical stabilizer skin structure tow-steered by automatic fiber placement technique were optimized with the parameterized trajectories and plies as design variables.Firstly,the vibration and damping numerical models were derived based on Kirchhoff laminate theory,the Rayleigh-Ritz method,and the Strain Energy Method.Then the optimization model was developed by adopting the self-adaptive Differential Evolution Multi-objective optimization algorithm and incorporating the solution method of Pareto Front.The constraints of this optimization model considered the experimentally obtained minimum turning radius of prepregs tow-steered in automatic fiber placement process obtained from experimental tests.Finally,the comparison of numerical simulation results was conducted for the optimized trajectories and the conventional straight trajectories under various boundary conditions,and the numerical results were partially validated through damping and frequency tests.The results indicate the vibration characteristics of the composite vertical stabilizer skin structure can be enhanced to a large extent by optimizing fiber trajectories,and the enhancement percentage is affected by the boundary conditions of the actual structure.
文摘Ride-sharing systems should combine environ- mental protection (through a reduction of fossil fuel usage), socialization, and security. Encouraging people to use ride- sharing systems by satisfying their demands for safety, pri- vacy and convenience is challenging. Most previous works on this topic have focused on finding a fixed path between the driver and the riders either based solely on their loca- tions or using social information. The drivers' and riders' lack of options to change or compute the path according to their own preferences and requirements is problematic. With the advancement of mobile social networking technologies, it is necessary to reconsider the principles and desired character- istics of ride-sharing systems. In this paper, we formalized the ride-sharing problem as a multi source-destination path plan- ning problem. An objective function that models different ob- jectives in a unified framework was developed. Moreover, we provide a similarity model, which can reflect the personal preferences of the rides and utilize social media to obtain the current interests of the riders and drivers. The model also al- lows each driver to generate sub-optimal paths according to his own requirements by suitably adjusting the weights. Two case studies have shown that our system has the potential to find the best possible match and computes the multiple opti- mal paths against different user-defined objective functions.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金the Hydra Technologies team in Mexicothe CREATEUTILI Program for their financial support。
文摘The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.
文摘Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units which produce either heat or power exclusively. Hence the economic dispatch problem for these plants optimizing the fuel cost is quite complex and several classical and meta-heuristic algo- rithms have been proposed earlier. This paper applies the invasive weed optimization algorithm which is inspired by the ecological process of weed colonization and distribu- tion. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over earlier ones.
基金co-supported by the National Natural Science Foundation of China(Nos.52272360,52005288,52232014)the Beijing Municipal Natural Science Foundation,China(No.3222019)the BIT Research and Innovation Promoting Project,China(No.2022YCXZ017)。
文摘As a crucial weapon in the sea battle,anti-ship missiles generally employ a sea-skimming penetration strategy to reduce the probability of being detected by the target radar,which greatly increases the risk of touching water caused by sensor errors or random sea conditions.To alleviate the large impact load by high-velocity water touching,a novel anti-ship missile body configuration is proposed in this paper,which is inspired by the idea of hydroplaning.A parametric geometry model is first developed to modify the configuration of the anti-ship missile body.Subsequently,a structured arbitrary Lagrange-Eulerian based Fluid-Structure Interaction(FSI)model is established to analyze the kinematics parameters of the missile body during the hydroplaning process.A missile body configuration optimization problem is then formulated to minimize the impact load considering several constraints,e.g.,horizontal velocity loss,pitch angle after touching water,and inside capacity for payload.Due to the time-consuming FSI simulation,a Kriging-assisted constrained differential evolution method is utilized to optimize the missile body configuration for reducing the impact load.During the optimization process,radial basis function and Kriging are combined with evolutionary operators to lead the search to the vicinity of the optimum rapidly.The result shows that the proposed missile body configuration can reduce the impact load by 18.8%compared with the ordinary configuration.Additionally,the optimized configuration can further yield a 17.4%impact load decrease subject to all the constraints and avoid structural damage by the high-velocity water touching,which demonstrates the effectiveness and practicability of the proposed anti-ship missile body configuration and corresponding optimization framework for reducing the impact load.
文摘An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architec- ture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertain- ties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candi- dates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.