Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear paramete...Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear parameters, viz. the flow gain coefficient of servo valve and total factors of flow-pressure coefficient. Taking trace error of torque control system to zero as control object, this article designs the adaptive nonlinear optimal compensation control strategy, which regards torque control output of closed-loop controller converging to zero as the control target, to optimize torque tracking performance. Electro-hydraulic load simulator is a typical case of the torque system which is strongly coupled with a hydraulic positioning system. This article firstly builds and analyzes the mathematical models of hydraulic torque and positioning system, then designs an adaptive nonlinear optimal compensation controller, proves the validity of parameters estimation, and shows the comparison data among three control structures with various typical operating conditions, including proportion-integral-derivative (PID) controller only, the velocity synchronizing controller plus P1D controller and the proposed adaptive nonlinear optimal compensation controller plus PID controller. Experimental results show that systems' nonlinear parameters are estimated exactly using the proposed method, and the trace accuracy of the torque system is greatly enhanced by adaptive nonlinear optimal compensation control, and the torque servo system capability against sudden disturbance can be greatly improved.展开更多
Improving fault tolerant performance of permanent magnet synchronous motor has always been the central issue of the electrically supplied actuator for aerospace application. In this paper, a novel fault tolerant perma...Improving fault tolerant performance of permanent magnet synchronous motor has always been the central issue of the electrically supplied actuator for aerospace application. In this paper, a novel fault tolerant permanent magnet synchronous motor is proposed, which is character- ized by two stators and two rotors on the same shaft with a circumferential displacement of mechanical angle of 4.5°. It helps to reduce the cogging torque. Each segment of the stator and the rotor can be considered as an 8-pole/10-slot five-phase permanent magnet synchronous motor with concentrated, single-layer and alternate teeth wound winding, which enhance the fault isola- tion capacity of the motor. Furthermore, the motor has high phase inductance to restrain the short-circuit current. In addition, an improved optimal torque control strategy is proposed to make the motor work well under the open-circuit fault and short-circuit fault conditions. Simulation and experiment results show that the proposed fault tolerant motor system has excellent fault tolerant capacity, which is able to operate continuously under the third open-circuit fault and second short- circuit fault condition without system performance degradation, which was not available earlier.展开更多
串联弹性驱动器(Series elastic actuator, SEA)是机器人交互系统中的一种理想力源.本文针对非线性SEA的力矩控制问题提出一种基于RISE (Robust integral of the sign of the error)反馈的最优控制方法,能够克服模型参数不确定和有界扰...串联弹性驱动器(Series elastic actuator, SEA)是机器人交互系统中的一种理想力源.本文针对非线性SEA的力矩控制问题提出一种基于RISE (Robust integral of the sign of the error)反馈的最优控制方法,能够克服模型参数不确定和有界扰动,实现SEA输出力矩在交互过程中快速平稳地收敛到期望值.具体来说,首先对SEA的模型进行分析和变换;然后假设模型参数和扰动均已知,并在此基础上基于二次型指标设计最优控制律;之后基于RISE反馈重新设计控制律抵消模型参数不确定性和有界扰动,基于Lyapunov理论分析控制器的收敛性和信号的有界性,实验结果表明这种基于RISE反馈的最优控制方法具有良好的控制性能和对有界扰动的鲁棒性.展开更多
This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM) under various open-circuit and short-circuit fault condit...This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM) under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.展开更多
In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) drive...In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency.展开更多
基金National Natural Science Foundation of China (50825502)
文摘Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear parameters, viz. the flow gain coefficient of servo valve and total factors of flow-pressure coefficient. Taking trace error of torque control system to zero as control object, this article designs the adaptive nonlinear optimal compensation control strategy, which regards torque control output of closed-loop controller converging to zero as the control target, to optimize torque tracking performance. Electro-hydraulic load simulator is a typical case of the torque system which is strongly coupled with a hydraulic positioning system. This article firstly builds and analyzes the mathematical models of hydraulic torque and positioning system, then designs an adaptive nonlinear optimal compensation controller, proves the validity of parameters estimation, and shows the comparison data among three control structures with various typical operating conditions, including proportion-integral-derivative (PID) controller only, the velocity synchronizing controller plus P1D controller and the proposed adaptive nonlinear optimal compensation controller plus PID controller. Experimental results show that systems' nonlinear parameters are estimated exactly using the proposed method, and the trace accuracy of the torque system is greatly enhanced by adaptive nonlinear optimal compensation control, and the torque servo system capability against sudden disturbance can be greatly improved.
文摘Improving fault tolerant performance of permanent magnet synchronous motor has always been the central issue of the electrically supplied actuator for aerospace application. In this paper, a novel fault tolerant permanent magnet synchronous motor is proposed, which is character- ized by two stators and two rotors on the same shaft with a circumferential displacement of mechanical angle of 4.5°. It helps to reduce the cogging torque. Each segment of the stator and the rotor can be considered as an 8-pole/10-slot five-phase permanent magnet synchronous motor with concentrated, single-layer and alternate teeth wound winding, which enhance the fault isola- tion capacity of the motor. Furthermore, the motor has high phase inductance to restrain the short-circuit current. In addition, an improved optimal torque control strategy is proposed to make the motor work well under the open-circuit fault and short-circuit fault conditions. Simulation and experiment results show that the proposed fault tolerant motor system has excellent fault tolerant capacity, which is able to operate continuously under the third open-circuit fault and second short- circuit fault condition without system performance degradation, which was not available earlier.
文摘串联弹性驱动器(Series elastic actuator, SEA)是机器人交互系统中的一种理想力源.本文针对非线性SEA的力矩控制问题提出一种基于RISE (Robust integral of the sign of the error)反馈的最优控制方法,能够克服模型参数不确定和有界扰动,实现SEA输出力矩在交互过程中快速平稳地收敛到期望值.具体来说,首先对SEA的模型进行分析和变换;然后假设模型参数和扰动均已知,并在此基础上基于二次型指标设计最优控制律;之后基于RISE反馈重新设计控制律抵消模型参数不确定性和有界扰动,基于Lyapunov理论分析控制器的收敛性和信号的有界性,实验结果表明这种基于RISE反馈的最优控制方法具有良好的控制性能和对有界扰动的鲁棒性.
文摘This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM) under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.
基金This work was supported by the NSFC Projects of International Cooperation and Exchanges (No. 61520106008), the National Natural Science Foundation of China (Nos. 61503149, U1564207) and the Graduate Innovation Fund of Jilin University (No. 2016093).
文摘In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency.