期刊文献+

粒子群算法优化的双臂机器人模糊逻辑控制仿真研究 被引量:7

The fuzzy logic control simulation study of two-arm robot with particle swarm optimization
下载PDF
导出
摘要 针对双臂机器人运动轨迹跟踪误差大、抖动现象严重等问题,采用粒子群算法对双臂机器人模糊逻辑控制进行改进,并对运动轨迹进行仿真验证.建立了双臂机器人简图模型,构造机器人动力学方程式.分析了模糊逻辑控制器结构,引用高斯隶属度函数定义模糊逻辑控制的输入与输出变量.使用3种不同成本函数定义机器人运动轨迹的平方误差均值、误差的绝对值及控制力参考误差,采用粒子群算法改进模糊逻辑控制的成本函数.通过数学软件Matlab对改进模糊逻辑控制的双臂机器人运动误差和控制力矩进行仿真,并且比较不同控制方法的双臂机器人运动轨迹误差和控制力矩仿真结果.仿真结果表明,在外界干扰因素的影响下,双臂机器人采用改进模糊逻辑控制方法,不仅运动轨迹跟踪误差较小,而且输入力矩值也较小.采用改进模糊逻辑控制双臂机器人运动轨迹,能够降低跟踪误差和控制系统的抖动幅度. For dual-arm robot trajectory tracking error and serious problems such as jitter phenomenon,using the particle swarm algorithm to improve the dual-arm robot fuzzy logic control,and the trajectory simulation.The robot diagram model is established to construct robot dynamic equation.The fuzzy logic controller structure is analyzed,and the input and output variables of fuzzy logic control are defined by the Gaussian membership function.Using three different cost function defined in the robot trajectory and control of the absolute value of the mean square error,error of the reference error,using particle swarm optimization algorithm to improve the fuzzy logic control of the cost function.Through the mathematical software Matlab to improve the fuzzy logic control of dual-arm robot motion error and control torque,simulation and comparison of different control methods of dual-arm robot trajectory error and control torque simulation results.The simulation results show that under the influence of interference factors,dual-arm robot with the improved fuzzy logic control method,not only the trajectory tracking error is small,and the input torque value is also smaller.Using improved fuzzy logic to control the robot motion trajectory,the tracking error and the vibration amplitude of the control system can be reduced.
作者 吴瑞芳 贾讼敏 WU Ruifang;JIA Songmin(Department of Mechanical and Electrical Engineering,Langfang Yanjing Vocationtl Technictl College,Langfang 274015,Hebei,China;School of Electronic Information and Control Engineering,Beijing University of Technology,Beijing 100124,China)
出处 《中国工程机械学报》 北大核心 2018年第3期216-220,共5页 Chinese Journal of Construction Machinery
基金 北京市自然科学基金重点资助项目(KZ201310006012)
关键词 粒子群算法 双臂机器人 模糊逻辑控制 误差 力矩 particle swarm optimization dual-arm robot fuzzy logic control error torque
  • 相关文献

参考文献7

二级参考文献26

  • 1廖芳芳,肖建.基于BP神经网络PID参数自整定的研究[J].系统仿真学报,2005,17(7):1711-1713. 被引量:87
  • 2蒋新松.机器人学导[M].沈阳:辽宁科学技术出社,1994. 被引量:1
  • 3Liu Jin - Kun, Sun Fu - Chun. Nominal Model - Based Sliding Mode Control with Backstepping for 3 - Axis Flight Table [ J ]. Chinese Journal of Aeronauties, 2006,19 ( 1 ) : 65 - 71. 被引量:1
  • 4Wu Qiang, Liu Jin - Kun. Backstepping Position Tracking Controller Design With Neural Network Deadzone Compensation [ C ].1st International Symposium on Systems and Control in Aerospace and Astronautics ISSCAA 2006, Harbin, China, 2006. 1145 - 1150. 被引量:1
  • 5Jiang Zhong - Ping, Henk Nijmeijer. Tracking control of mobile robots: A case study in backstepping [ J ]. Automatica, 1997,33 (7) : 1393 -1399. 被引量:1
  • 6Ognjen Kuljaca, Nitin Swamy, Frank L Lewis, Chiman M Kwan. Design and Implementation of Industrial Neural Network Controller Using Backstepping[ J]. IEEE Transactions on Industrial Electronics, 2003,50(1) :193 -201. 被引量:1
  • 7Jong H Oht, Jin SLeet. Control of Flexible Joint Robot System by Backstepping Design Approach [ C ]. Proceedings of the 1997 IEEE, International Conference on Robotics and Automation, New Mexico, 1997. 3435 -3440. 被引量:1
  • 8赵娟平.神经网络PID控制策略及其Matlab仿真研究[J].微计算机信息,2007,23(03S):59-60. 被引量:26
  • 9刘金琨.先进PID控制及MATLAB仿真[M].北京:电子工业出版社,2003.. 被引量:54
  • 10张福学.机器人技术及应用[M].北京:电子工业出版社,2000.. 被引量:2

共引文献15

同被引文献51

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部