To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solv...To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solved through optimization: the judgment time of the IBA system was advanced to allow a bus to jump car queues if the bus was detected to arrive at the intersection, and the instant that the IBA lane became available to cars was controlled dynamically to increase the capacity of the IBA lane. The total car delay in one cycle was then analyzed quantitatively when implementing the optimal control system. The results show that in comparison with the existing system of the IBA, the car delay is greatly reduced and the probability of a car stopping twice is low after optimizing the IBA system.展开更多
This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for exam...This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.展开更多
文摘To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solved through optimization: the judgment time of the IBA system was advanced to allow a bus to jump car queues if the bus was detected to arrive at the intersection, and the instant that the IBA lane became available to cars was controlled dynamically to increase the capacity of the IBA lane. The total car delay in one cycle was then analyzed quantitatively when implementing the optimal control system. The results show that in comparison with the existing system of the IBA, the car delay is greatly reduced and the probability of a car stopping twice is low after optimizing the IBA system.
文摘This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.