With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the re...With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the requirements-tasking-effectscycle from one day to hours, the various resources of the wholedata acquisition chain (including satellites, ground stations, dataprocessing centers, users, etc.) should be taken into an overallconsideration, and the traditional batch task planning mode shouldbe transformed into the user-oriented task planning mode. Consideringthere are many approaches for data acquisition due tothe new techniques of ORS satellite, the data acquisition chaintask planning problem for ORS satellite can be seen as the multimodalroute planning problem. Thereby, a framework is presentedusing label-constrained shortest path technique with the conflictresolution. To apply this framework to solve the ORS satellite taskplanning problem, the preprocessing and the conflict resolutionstrategies are discussed in detail. Based on the above work, theuser-oriented data acquisition chain task planning algorithm forORS satellite is proposed. The exact solution can be obtainedin polynomial time using the proposed algorithm. The simulationexperiments validate the feasibility and the adaptability of the proposedapproach.展开更多
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the requirements-tasking-effectscycle from one day to hours, the various resources of the wholedata acquisition chain (including satellites, ground stations, dataprocessing centers, users, etc.) should be taken into an overallconsideration, and the traditional batch task planning mode shouldbe transformed into the user-oriented task planning mode. Consideringthere are many approaches for data acquisition due tothe new techniques of ORS satellite, the data acquisition chaintask planning problem for ORS satellite can be seen as the multimodalroute planning problem. Thereby, a framework is presentedusing label-constrained shortest path technique with the conflictresolution. To apply this framework to solve the ORS satellite taskplanning problem, the preprocessing and the conflict resolutionstrategies are discussed in detail. Based on the above work, theuser-oriented data acquisition chain task planning algorithm forORS satellite is proposed. The exact solution can be obtainedin polynomial time using the proposed algorithm. The simulationexperiments validate the feasibility and the adaptability of the proposedapproach.