One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ...One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.展开更多
Power quality assessment is an important performance measurement in smart grids.Utility companies are interested in power quality monitoring even in the low level distribution side such as smart meters.Addressing this...Power quality assessment is an important performance measurement in smart grids.Utility companies are interested in power quality monitoring even in the low level distribution side such as smart meters.Addressing this issue,in this study,we propose segregation of the power disturbance from regular values using one-class support vector machine(OCSVM).To precisely detect the power disturbances of a voltage wave,some practical wavelet filters are applied.Considering the unlimited types of waveform abnormalities,OCSVM is picked as a semisupervised machine learning algorithm which needs to be trained solely on a relatively large sample of normal data.This model is able to automatically detect the existence of any types of disturbances in real time,even unknown types which are not available in the training time.In the case of existence,the disturbances are further classified into different types such as sag,swell,transients and unbalanced.Being light weighted and fast,the proposed technique can be integrated into smart grid devices such as smart meter in order to perform a real-time disturbance monitoring.The continuous monitoring of power quality in smart meters will give helpful insight for quality power transmission and management.展开更多
In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly d...In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly detection using AI(Artificial Intelligence)is actively progressing,the encrypted nature of the data poses challenges for labeling,resulting in data imbalance and biased feature extraction toward specific nodes.This study proposes a reconstruction error-based anomaly detection method using an autoencoder(AE)that utilizes packet metadata excluding specific node information.The proposed method omits biased packet metadata such as IP and Port and trains the detection model using only normal data,leveraging a small amount of packet metadata.This makes it well-suited for direct application in IoT environments due to its low resource consumption.In experiments comparing feature extraction methods for AE-based anomaly detection,we found that using flowbased features significantly improves accuracy,precision,F1 score,and AUC(Area Under the Receiver Operating Characteristic Curve)score compared to packet-based features.Additionally,for flow-based features,the proposed method showed a 30.17%increase in F1 score and improved false positive rates compared to Isolation Forest and OneClassSVM.Furthermore,the proposedmethod demonstrated a 32.43%higherAUCwhen using packet features and a 111.39%higher AUC when using flow features,compared to previously proposed oversampling methods.This study highlights the impact of feature extraction methods on attack detection in imbalanced,encrypted traffic environments and emphasizes that the one-class method using AE is more effective for attack detection and reducing false positives compared to traditional oversampling methods.展开更多
Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-c...Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness.展开更多
针对行星滚柱丝杠(planetary roller screw mechanism,PRSM)在实际应用中故障机理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型——深度支持向量数据描述(deep support vector data description,deep SVDD)...针对行星滚柱丝杠(planetary roller screw mechanism,PRSM)在实际应用中故障机理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型——深度支持向量数据描述(deep support vector data description,deep SVDD)进行故障检测,判断PRSM是否处于正常状态。首先,在PRSM试验台上采集正常状态、润滑失效和滚柱一侧断齿3种状态的振动信号;其次,对数据进行归一化并通过窗口裁剪的方式进行数据增强,以扩充样本数量;然后,通过小波包变换对信号进行分解,以初步提取数据的特征;最后,利用deep SVDD实现PRSM故障检测,同时与单分类支持向量机(one-class support vector machine,OCSVM)和支持向量数据描述(support vector data description,SVDD)方法进行对比,结果表明,deep SVDD具有更好的分类能力和较高的训练效率,较为适合实现PRSM故障检测。展开更多
在互联网流量中,大部分网络数据是正常用户的访问数据,只有很小的一部分是攻击数据。针对这一点,文中通过对SVM的深入研究,结合C-SVM模型与One-class SVM模型的优点,提出了一种高精度且拥有无监督特性的模型One Class Enhanced SVM(ONE-...在互联网流量中,大部分网络数据是正常用户的访问数据,只有很小的一部分是攻击数据。针对这一点,文中通过对SVM的深入研究,结合C-SVM模型与One-class SVM模型的优点,提出了一种高精度且拥有无监督特性的模型One Class Enhanced SVM(ONE-ESVM),该模型很适合入侵检测某类数据量比例很大而其他类型的数据量比例较小的场景。文中通过CSE-CIC-IDS2018数据集对该模型进行了验证,结果表明,ONE-ESVM除了拥有One-class SVM的无监督特性外,其预测正确率最高能达到95.81%,误报率最低至0.49%,其性能足以满足网络入侵检测系统的需求。展开更多
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ...The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.展开更多
Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and com...Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and commercial transactions due to its various advantages,including noninvasiveness,user-friendliness,and social and legal acceptability.According to the literature,extensive research has been conducted on signature verification systems in a variety of languages,including English,Hindi,Bangla,and Chinese.However,the Arabic Offline Signature Verification(OSV)system is still a challenging issue that has not been investigated as much by researchers due to the Arabic script being distinguished by changing letter shapes,diacritics,ligatures,and overlapping,making verification more difficult.Recently,signature verification systems have shown promising results for recognizing signatures that are genuine or forgeries;however,performance on skilled forgery detection is still unsatisfactory.Most existing methods require many learning samples to improve verification accuracy,which is a major drawback because the number of available signature samples is often limited in the practical application of signature verification systems.This study addresses these issues by presenting an OSV system based on multifeature fusion and discriminant feature selection using a genetic algorithm(GA).In contrast to existing methods,which use multiclass learning approaches,this study uses a oneclass learning strategy to address imbalanced signature data in the practical application of a signature verification system.The proposed approach is tested on three signature databases(SID)-Arabic handwriting signatures,CEDAR(Center of Excellence for Document Analysis and Recognition),and UTSIG(University of Tehran Persian Signature),and experimental results show that the proposed system outperforms existing systems in terms of reducing the False Acceptance Rate(FAR),False Rejection Rate(FRR),and Equal Error Rate(ERR).The proposed system achieved 5展开更多
文摘One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.
基金supported in part through U.S.National Science Foundation(No.1553494).
文摘Power quality assessment is an important performance measurement in smart grids.Utility companies are interested in power quality monitoring even in the low level distribution side such as smart meters.Addressing this issue,in this study,we propose segregation of the power disturbance from regular values using one-class support vector machine(OCSVM).To precisely detect the power disturbances of a voltage wave,some practical wavelet filters are applied.Considering the unlimited types of waveform abnormalities,OCSVM is picked as a semisupervised machine learning algorithm which needs to be trained solely on a relatively large sample of normal data.This model is able to automatically detect the existence of any types of disturbances in real time,even unknown types which are not available in the training time.In the case of existence,the disturbances are further classified into different types such as sag,swell,transients and unbalanced.Being light weighted and fast,the proposed technique can be integrated into smart grid devices such as smart meter in order to perform a real-time disturbance monitoring.The continuous monitoring of power quality in smart meters will give helpful insight for quality power transmission and management.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509,Development of Security Monitoring Technology Based Network Behavior against Encrypted Cyber Threats in ICT Convergence Environment).
文摘In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly detection using AI(Artificial Intelligence)is actively progressing,the encrypted nature of the data poses challenges for labeling,resulting in data imbalance and biased feature extraction toward specific nodes.This study proposes a reconstruction error-based anomaly detection method using an autoencoder(AE)that utilizes packet metadata excluding specific node information.The proposed method omits biased packet metadata such as IP and Port and trains the detection model using only normal data,leveraging a small amount of packet metadata.This makes it well-suited for direct application in IoT environments due to its low resource consumption.In experiments comparing feature extraction methods for AE-based anomaly detection,we found that using flowbased features significantly improves accuracy,precision,F1 score,and AUC(Area Under the Receiver Operating Characteristic Curve)score compared to packet-based features.Additionally,for flow-based features,the proposed method showed a 30.17%increase in F1 score and improved false positive rates compared to Isolation Forest and OneClassSVM.Furthermore,the proposedmethod demonstrated a 32.43%higherAUCwhen using packet features and a 111.39%higher AUC when using flow features,compared to previously proposed oversampling methods.This study highlights the impact of feature extraction methods on attack detection in imbalanced,encrypted traffic environments and emphasizes that the one-class method using AE is more effective for attack detection and reducing false positives compared to traditional oversampling methods.
基金supported by the National Natural Science Foundation of China(NSFC)(U1704158)Henan Province Technologies Research and Development Project of China(212102210103)+1 种基金the NSFC Development Funding of Henan Normal University(2020PL09)the University of Manitoba Research Grants Program(URGP)。
文摘Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness.
文摘针对行星滚柱丝杠(planetary roller screw mechanism,PRSM)在实际应用中故障机理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型——深度支持向量数据描述(deep support vector data description,deep SVDD)进行故障检测,判断PRSM是否处于正常状态。首先,在PRSM试验台上采集正常状态、润滑失效和滚柱一侧断齿3种状态的振动信号;其次,对数据进行归一化并通过窗口裁剪的方式进行数据增强,以扩充样本数量;然后,通过小波包变换对信号进行分解,以初步提取数据的特征;最后,利用deep SVDD实现PRSM故障检测,同时与单分类支持向量机(one-class support vector machine,OCSVM)和支持向量数据描述(support vector data description,SVDD)方法进行对比,结果表明,deep SVDD具有更好的分类能力和较高的训练效率,较为适合实现PRSM故障检测。
文摘The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.
文摘Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and commercial transactions due to its various advantages,including noninvasiveness,user-friendliness,and social and legal acceptability.According to the literature,extensive research has been conducted on signature verification systems in a variety of languages,including English,Hindi,Bangla,and Chinese.However,the Arabic Offline Signature Verification(OSV)system is still a challenging issue that has not been investigated as much by researchers due to the Arabic script being distinguished by changing letter shapes,diacritics,ligatures,and overlapping,making verification more difficult.Recently,signature verification systems have shown promising results for recognizing signatures that are genuine or forgeries;however,performance on skilled forgery detection is still unsatisfactory.Most existing methods require many learning samples to improve verification accuracy,which is a major drawback because the number of available signature samples is often limited in the practical application of signature verification systems.This study addresses these issues by presenting an OSV system based on multifeature fusion and discriminant feature selection using a genetic algorithm(GA).In contrast to existing methods,which use multiclass learning approaches,this study uses a oneclass learning strategy to address imbalanced signature data in the practical application of a signature verification system.The proposed approach is tested on three signature databases(SID)-Arabic handwriting signatures,CEDAR(Center of Excellence for Document Analysis and Recognition),and UTSIG(University of Tehran Persian Signature),and experimental results show that the proposed system outperforms existing systems in terms of reducing the False Acceptance Rate(FAR),False Rejection Rate(FRR),and Equal Error Rate(ERR).The proposed system achieved 5