This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed o...This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).展开更多
The sense of smell is important for human quality of life. This sophisticated sensorial system relies on the detection of odorant molecules that engage receptors expressed in the cilia of dedicated neurons that consti...The sense of smell is important for human quality of life. This sophisticated sensorial system relies on the detection of odorant molecules that engage receptors expressed in the cilia of dedicated neurons that constitute the olfactory epithelium(OE). Importantly, the OE is a highly active site of adult neurogenesis where short-lived neurons are efficiently replenished, even after massive neuronal cell loss. It is suggested that the degree of olfactory function recovery after OE injury may depend on the nature of the lesion(traumatic, chemical, infectious or inflammatory), as well on the velocity of cellular regeneration. Topical steroidal anti-inflammatory drugs, such as glucocorticoids, are routinely prescribed for treating upper airway inflammatory conditions, such as chronic rhinosinusitis. While the therapeutic strategy aims to minimize the inflammatory damage and dysfunction to nasal air conduction, new evidences raise concerns if such drugs may impair neuronal regeneration in the OE. In consequence, new directions are necessary in terms of drug development or prescription, in order to preserve olfactory function through lifelong repeated episodes of chronic inflammation in the upper respiratory tract. Here we discuss mechanisms involved in glucocorticoid deleterious effects to OE regeneration and possible therapeutic alternatives considering relevant side effects.展开更多
Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory syste...Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].展开更多
基金supported by the National Natural Science Foundation ofChina (No. 60725102)the Natural Science Foundation of Zhejiang Province, China (No. R205505)
文摘This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).
基金supported by research grants to IG from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo(FAPESP 2007/53732-8)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq 484869/2012-4)CEPID Redoxoma(FAPESP 2013/07937-8)
文摘The sense of smell is important for human quality of life. This sophisticated sensorial system relies on the detection of odorant molecules that engage receptors expressed in the cilia of dedicated neurons that constitute the olfactory epithelium(OE). Importantly, the OE is a highly active site of adult neurogenesis where short-lived neurons are efficiently replenished, even after massive neuronal cell loss. It is suggested that the degree of olfactory function recovery after OE injury may depend on the nature of the lesion(traumatic, chemical, infectious or inflammatory), as well on the velocity of cellular regeneration. Topical steroidal anti-inflammatory drugs, such as glucocorticoids, are routinely prescribed for treating upper airway inflammatory conditions, such as chronic rhinosinusitis. While the therapeutic strategy aims to minimize the inflammatory damage and dysfunction to nasal air conduction, new evidences raise concerns if such drugs may impair neuronal regeneration in the OE. In consequence, new directions are necessary in terms of drug development or prescription, in order to preserve olfactory function through lifelong repeated episodes of chronic inflammation in the upper respiratory tract. Here we discuss mechanisms involved in glucocorticoid deleterious effects to OE regeneration and possible therapeutic alternatives considering relevant side effects.
基金supported by the China Ministry of Science and Technology 973 (2010CB833902)863 grants (2008AA022902)
文摘Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].