Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both th...Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both the theoretical analysis and numerical simulation are employed to study the bearing capacity of CBF and the relationship between loads and ground deformation. Furthermore, monopile, high-rise pile cap, tripod and CBF designs are compared to analyze the bearing capacity and ground deformation, with a 3-MW wind generator as an example. The resuits indicate that CBF can effectively bear horizontal load and large bending moment resulting from upper structures and environmental load.展开更多
This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore win...This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.展开更多
The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket fou...The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.展开更多
In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.Th...In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation.展开更多
Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation m...Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, leg- islation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.展开更多
Offshore wind farms(OWFs)have received widespread attention for their abundant unexploited wind energy poten-tial and convenient locations conditions.They are rapidly developing towards having large capacity and being...Offshore wind farms(OWFs)have received widespread attention for their abundant unexploited wind energy poten-tial and convenient locations conditions.They are rapidly developing towards having large capacity and being located further away from shore.It is thus necessary to explore effective power transmission technologies to connect large OWFs to onshore grids.At present,three types of power transmission technologies have been proposed for large OWF integration.They are:high voltage alternating current(HVAC)transmission,high voltage direct current(HVDC)transmission,and low-frequency alternating current(LFAC)or fractional frequency alternating current transmission.This work undertakes a comprehensive review of grid connection technologies for large OWF integration.Compared with previous reviews,a more exhaustive summary is provided to elaborate HVAC,LFAC,and five HVDC topologies,consisting of line-commutated converter HVDC,voltage source converter HVDC,hybrid-HVDC,diode rectifier-based HVDC,and all DC transmission systems.The fault ride-through technologies of the grid connection schemes are also presented in detail to provide research references and guidelines for researchers.In addition,a comprehensive evalu-ation of the seven grid connection technologies for large OWFs is proposed based on eight specific indicators.Finally,eight conclusions and six perspectives are outlined for future research in integrating large OWFs.展开更多
文摘Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both the theoretical analysis and numerical simulation are employed to study the bearing capacity of CBF and the relationship between loads and ground deformation. Furthermore, monopile, high-rise pile cap, tripod and CBF designs are compared to analyze the bearing capacity and ground deformation, with a 3-MW wind generator as an example. The resuits indicate that CBF can effectively bear horizontal load and large bending moment resulting from upper structures and environmental load.
文摘This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.
基金Supported by Creative Research Groups of National Natural Science Foundation of China (No. 51021004)Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0851)
文摘The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.
基金The National Natural Science Foundation of China(No.51109160)the National High Technology Research and Development Program of China(863 Program)(No.2012AA051705)+1 种基金the International S&T Cooperation Program of China(No.2012DFA70490)the Natural Science Foundation of Tianjin(No.13JCQNJC06900,13JCYBJC19100)
文摘In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation.
文摘Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, leg- islation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.
基金National Natural Science Foundation of China (61963020)National Natural Science Foundation of China (52022035)+2 种基金Key Program of National Natural Science Foundation of China (52037003)Major Special Project of Yunnan Province of China (202002AF080001)Curriculum ideological and political connotation construction project (2021KS037).
文摘Offshore wind farms(OWFs)have received widespread attention for their abundant unexploited wind energy poten-tial and convenient locations conditions.They are rapidly developing towards having large capacity and being located further away from shore.It is thus necessary to explore effective power transmission technologies to connect large OWFs to onshore grids.At present,three types of power transmission technologies have been proposed for large OWF integration.They are:high voltage alternating current(HVAC)transmission,high voltage direct current(HVDC)transmission,and low-frequency alternating current(LFAC)or fractional frequency alternating current transmission.This work undertakes a comprehensive review of grid connection technologies for large OWF integration.Compared with previous reviews,a more exhaustive summary is provided to elaborate HVAC,LFAC,and five HVDC topologies,consisting of line-commutated converter HVDC,voltage source converter HVDC,hybrid-HVDC,diode rectifier-based HVDC,and all DC transmission systems.The fault ride-through technologies of the grid connection schemes are also presented in detail to provide research references and guidelines for researchers.In addition,a comprehensive evalu-ation of the seven grid connection technologies for large OWFs is proposed based on eight specific indicators.Finally,eight conclusions and six perspectives are outlined for future research in integrating large OWFs.