On the basis of previous work, we develop a middle and low latitude theoretical ionospheric model in this paper, named Theoretical Ionospheric Model of the Earth in the Institute of Geology and Geophysics, Chinese Aca...On the basis of previous work, we develop a middle and low latitude theoretical ionospheric model in this paper, named Theoretical Ionospheric Model of the Earth in the Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME-IGGCAS). TIME-IGGCAS solves the equations of mass continuity, motion and energy of electron and ions self-consistently and uses an eccentric dipole field approxima-tion to the Earth’s magnetic field. We combine the Eulerian and Lagrangian approaches in the model and take account of the plasma E×B drift velocity. Calculation results reveal that the model is steady and credible and can reproduce most large-scale features of ionosphere. By using TIME-IGGCAS, we carried out an observation system data assimilation experiment. Assimilation results show that the E×B drift velocity can be accurately estimated by ingesting the observed foF2 and hmF2 into the model ap-plying nonlinear least-square fit method. We suggest that this work is of great significance in the de-velopment of ionospheric data assimilation model to give better nowcast and forecast of ionosphere.展开更多
基金the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX3-SW-144)the National Natural Science Foundation of China (Grant Nos. 40636032, 40574071 and 40504023)National Important Basic Research Project (Grant No. 2006CB806306)
文摘On the basis of previous work, we develop a middle and low latitude theoretical ionospheric model in this paper, named Theoretical Ionospheric Model of the Earth in the Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME-IGGCAS). TIME-IGGCAS solves the equations of mass continuity, motion and energy of electron and ions self-consistently and uses an eccentric dipole field approxima-tion to the Earth’s magnetic field. We combine the Eulerian and Lagrangian approaches in the model and take account of the plasma E×B drift velocity. Calculation results reveal that the model is steady and credible and can reproduce most large-scale features of ionosphere. By using TIME-IGGCAS, we carried out an observation system data assimilation experiment. Assimilation results show that the E×B drift velocity can be accurately estimated by ingesting the observed foF2 and hmF2 into the model ap-plying nonlinear least-square fit method. We suggest that this work is of great significance in the de-velopment of ionospheric data assimilation model to give better nowcast and forecast of ionosphere.