The solid state morphology of the tri block copolymer PS b PCEMA b PtBA, which was synthesized by anionic polymerization with narrow molecular weight distribution, was in lamella structure from TEM micrographs. After ...The solid state morphology of the tri block copolymer PS b PCEMA b PtBA, which was synthesized by anionic polymerization with narrow molecular weight distribution, was in lamella structure from TEM micrographs. After being blended with polystyrene with the mass ratio of 1∶0 4, the morphology showed cylinder structure. With PS as continous phase, PCEMA and PtBA phases formed cylinders with PCEMA as outer layer. The nanofibres can be got and dispersed in good solvents of PS when the PCEMA phase was crosslinked. The t butyl group in PtBA phase can be cleavaged by reacting with TMSI, and nanofibres changed to nanotubes finally. It has the great potential applications, such as in the preparation of nanowires, template polymerization, nano reactor etc ..展开更多
Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies.Soil microbial fuel cell(SMFC)technology has great potential for carbon-neutral bioenergy ...Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies.Soil microbial fuel cell(SMFC)technology has great potential for carbon-neutral bioenergy generation and self-powered electrochemical bioremediation.In this study,an in-depth assessment on the effect of several carbon-based cathode materials on the electrochemical performance of SMFCs is provided for the first time.An innovative carbon nanofibers electrode doped with Fe(CNFFe)is used as cathode material in membrane-less SMFCs,and the performance of the resulting device is compared with SMFCs implementing either Pt-doped carbon cloth(PtC),carbon cloth,or graphite felt(GF)as the cathode.Electrochemical analyses are integrated with microbial analyses to assess the impact on both electrogenesis and microbial composition of the anodic and cathodic biofilm.The results show that CNFFe and PtC generate very stable performances,with a peak power density(with respect to the cathode geometric area)of 25.5 and 30.4 mW m^(−2),respectively.The best electrochemical performance was obtained with GF,with a peak power density of 87.3 mW m^(−2).Taxonomic profiling of the microbial communities revealed differences between anodic and cathodic communities.The anodes were predominantly enriched with Geobacter and Pseudomonas species,while cathodic communities were dominated by hydrogen-producing and hydrogenotrophic bacteria,indicating H_(2)cycling as a possible electron transfer mechanism.The presence of nitrate-reducing bacteria,combined with the results of cyclic voltammograms,suggests microbial nitrate reduction occurred on GF cathodes.The results of this study can contribute to the development of effective SMFC design strategies for field implementation.展开更多
NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the compo...NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures. This paper investigates the thermal decomposition process, structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermo-gravimetric and differential thermal analysis, x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer. It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology graduMly transforms from a porous structure to a necklace-like nanostructure with the increase of calcination tempera-ture. The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000℃ for 2h are characterized by a necklace-like morphology and diameters of 100-200nm. The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000℃. The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600℃. Due to the shape anisotropy, the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis.展开更多
Polyacrylonitrile-metal sulfide nanocomposites with metal sulfide(Ag2S, CuS, PbS) nanoparticles homo- geneously dispersed on the polyacrylonitrile(PAN) nanofibre were synthesized by means of electrospinning techno...Polyacrylonitrile-metal sulfide nanocomposites with metal sulfide(Ag2S, CuS, PbS) nanoparticles homo- geneously dispersed on the polyacrylonitrile(PAN) nanofibre were synthesized by means of electrospinning techno- logy combined with gas-solid reaction. A series of experiments was performed to characterize the morphology varia- tion and distribution of the nanocrystalline. The result shows that the concentration of metal salt aqueous solution affects the size and morphology of metal sulfide nanoparticles during the chelating process. Further more, these metal ions nanoparticles were attached to the surface of the nanofibre homogeneously through chelating effect which will be propitious to prevent nanoparticles from aggregation. These results suggest that the method reported here is ex- tremely effective for synthesizing PAN-metal sulfide nanocomposites which have good visible light photocatalytic activity. Further more, this method could be extended to prepare other PAN-metal halides nanocomposites, too.展开更多
Ca and Mn co-doped BiFeO3 ultrafine nanofibres were prepared with the purpose of improving magnetic and photocatalytic performances of the one-dimensional multiferroic material. Impurity phase introduced by both Bi fl...Ca and Mn co-doped BiFeO3 ultrafine nanofibres were prepared with the purpose of improving magnetic and photocatalytic performances of the one-dimensional multiferroic material. Impurity phase introduced by both Bi fluctuation and Mn substitution can be suppressed by Ca doping and a space group transition from R3c to C222 can also be triggered by Bi-site doping. With co-substitution of Mn into iron site, the Ca0.15Bi0.85Mn0.05Fe0.95O3 nanofibres presented a larger saturation magnetization than the singly Ca doping samples, possibly due to the increased double exchange interation of Fe3+-O-Fe2+, strengthened by Ca and Mn. Photocatalytic degradation test witnessed a similar drop-and-rise performance with the magnetism.展开更多
Two types of micro/nano structures, microsphere and nanofibre, were prepared by elec- tro spinning technique and spray drying technique, with the soluble fluorinated poly ( ether ether ke- tone) (3F-PEEK) as the m...Two types of micro/nano structures, microsphere and nanofibre, were prepared by elec- tro spinning technique and spray drying technique, with the soluble fluorinated poly ( ether ether ke- tone) (3F-PEEK) as the matrix. The micro/nano structures were exhibited in the scanning electron microscope (SEM) micrograghs, and the separated nanofibre and microsphere were observed. The sizes of micro/nano structures were measured by the statistical analysis method. We designed exper- iments to connect up all the micro/nano structures to form new three dimensional micro/nano struc- tures that were observed by SEM. In the experiments, supercritical carbon dioxide ( C02 ) was se- lected as the welding solvent. A series of nanofibers were welded to form three dimensional netlike structures, and the particles were welded to form a porous film. The welding processes were studied by varying the exposure temperature, and the welding mechanism was discussed.展开更多
H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiP...H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability.展开更多
In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium...In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97% 98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.展开更多
Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI e...Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry.The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt /nanofibrous PANI electrode;the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation.The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity,reproducibility and stability.The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine,and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.展开更多
文摘The solid state morphology of the tri block copolymer PS b PCEMA b PtBA, which was synthesized by anionic polymerization with narrow molecular weight distribution, was in lamella structure from TEM micrographs. After being blended with polystyrene with the mass ratio of 1∶0 4, the morphology showed cylinder structure. With PS as continous phase, PCEMA and PtBA phases formed cylinders with PCEMA as outer layer. The nanofibres can be got and dispersed in good solvents of PS when the PCEMA phase was crosslinked. The t butyl group in PtBA phase can be cleavaged by reacting with TMSI, and nanofibres changed to nanotubes finally. It has the great potential applications, such as in the preparation of nanowires, template polymerization, nano reactor etc ..
基金This research was supported by the EU Horizon 2020 project GREENER(Grant Agreement No 826312).The authors wish to thank:Jakub Dziegielowski and Bongkyu Kim,from the University of Bath,for their suggestions and help on assembling and setting-up the SMFCs,Anna Salvian and Simone Krings,from the University of Surrey,for their assistance in DNA extraction.
文摘Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies.Soil microbial fuel cell(SMFC)technology has great potential for carbon-neutral bioenergy generation and self-powered electrochemical bioremediation.In this study,an in-depth assessment on the effect of several carbon-based cathode materials on the electrochemical performance of SMFCs is provided for the first time.An innovative carbon nanofibers electrode doped with Fe(CNFFe)is used as cathode material in membrane-less SMFCs,and the performance of the resulting device is compared with SMFCs implementing either Pt-doped carbon cloth(PtC),carbon cloth,or graphite felt(GF)as the cathode.Electrochemical analyses are integrated with microbial analyses to assess the impact on both electrogenesis and microbial composition of the anodic and cathodic biofilm.The results show that CNFFe and PtC generate very stable performances,with a peak power density(with respect to the cathode geometric area)of 25.5 and 30.4 mW m^(−2),respectively.The best electrochemical performance was obtained with GF,with a peak power density of 87.3 mW m^(−2).Taxonomic profiling of the microbial communities revealed differences between anodic and cathodic communities.The anodes were predominantly enriched with Geobacter and Pseudomonas species,while cathodic communities were dominated by hydrogen-producing and hydrogenotrophic bacteria,indicating H_(2)cycling as a possible electron transfer mechanism.The presence of nitrate-reducing bacteria,combined with the results of cyclic voltammograms,suggests microbial nitrate reduction occurred on GF cathodes.The results of this study can contribute to the development of effective SMFC design strategies for field implementation.
基金Project supported by the National Natural Science Foundation of China (Grant No 50674048)the Aerospace Science Foundation of China (Grant No 2007ZF52062)
文摘NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures. This paper investigates the thermal decomposition process, structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermo-gravimetric and differential thermal analysis, x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer. It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology graduMly transforms from a porous structure to a necklace-like nanostructure with the increase of calcination tempera-ture. The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000℃ for 2h are characterized by a necklace-like morphology and diameters of 100-200nm. The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000℃. The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600℃. Due to the shape anisotropy, the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis.
文摘Polyacrylonitrile-metal sulfide nanocomposites with metal sulfide(Ag2S, CuS, PbS) nanoparticles homo- geneously dispersed on the polyacrylonitrile(PAN) nanofibre were synthesized by means of electrospinning techno- logy combined with gas-solid reaction. A series of experiments was performed to characterize the morphology varia- tion and distribution of the nanocrystalline. The result shows that the concentration of metal salt aqueous solution affects the size and morphology of metal sulfide nanoparticles during the chelating process. Further more, these metal ions nanoparticles were attached to the surface of the nanofibre homogeneously through chelating effect which will be propitious to prevent nanoparticles from aggregation. These results suggest that the method reported here is ex- tremely effective for synthesizing PAN-metal sulfide nanocomposites which have good visible light photocatalytic activity. Further more, this method could be extended to prepare other PAN-metal halides nanocomposites, too.
文摘Ca and Mn co-doped BiFeO3 ultrafine nanofibres were prepared with the purpose of improving magnetic and photocatalytic performances of the one-dimensional multiferroic material. Impurity phase introduced by both Bi fluctuation and Mn substitution can be suppressed by Ca doping and a space group transition from R3c to C222 can also be triggered by Bi-site doping. With co-substitution of Mn into iron site, the Ca0.15Bi0.85Mn0.05Fe0.95O3 nanofibres presented a larger saturation magnetization than the singly Ca doping samples, possibly due to the increased double exchange interation of Fe3+-O-Fe2+, strengthened by Ca and Mn. Photocatalytic degradation test witnessed a similar drop-and-rise performance with the magnetism.
基金Supported by the National Natural Science Foundation of China(51103010)
文摘Two types of micro/nano structures, microsphere and nanofibre, were prepared by elec- tro spinning technique and spray drying technique, with the soluble fluorinated poly ( ether ether ke- tone) (3F-PEEK) as the matrix. The micro/nano structures were exhibited in the scanning electron microscope (SEM) micrograghs, and the separated nanofibre and microsphere were observed. The sizes of micro/nano structures were measured by the statistical analysis method. We designed exper- iments to connect up all the micro/nano structures to form new three dimensional micro/nano struc- tures that were observed by SEM. In the experiments, supercritical carbon dioxide ( C02 ) was se- lected as the welding solvent. A series of nanofibers were welded to form three dimensional netlike structures, and the particles were welded to form a porous film. The welding processes were studied by varying the exposure temperature, and the welding mechanism was discussed.
基金Project(2008AA03Z207) supported by the National Hi-tech Research and Development Program of China
文摘H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability.
文摘In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97% 98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.
基金Project(20050532008) supported by the PhD. Program Foundation of Ministry of Education of ChinaProject(06JJ4005) supported by the Natural Science Foundation of Hunan Province+1 种基金 Project(20060400874)supported by the Postdoctoral Foundation of China Project supported by the Postdoctoral Foundation of Hunan University
文摘Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry.The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt /nanofibrous PANI electrode;the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation.The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity,reproducibility and stability.The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine,and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.