We propose a formation control strategy for multiple unmanned aerial vehicles (multi-UAV) based on second-order consensus, by introducing position and velocity coordination variables through neighbor-to-neighbor int...We propose a formation control strategy for multiple unmanned aerial vehicles (multi-UAV) based on second-order consensus, by introducing position and velocity coordination variables through neighbor-to-neighbor interaction to generate steering commands. A cooperative guidance algorithm and a cooperative control algorithm are proposed together to maintain a specified geometric configuration, managing the position and attitude respectively. With the whole system composed of the six-degree-of-freedom UAV model, tile cooperative guidance algorithm, and the cooperative control algorithm, the formation control strategy is a closed-loop one and with full states. The cooperative guidance law is a second-order consensus algorithm, providing the desired acceleration, pitch rate, and heading rate. Longitudinal and lateral motions are jointly considered, and the cooperative control law is designed by deducing state equations. Closed-loop stability of the formation is analyzed, and a necessary and sufficient condition is provided. Measurement errors in position data are suppressed by synchronization technology to improve the control precision. In the simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the formation control strategy.展开更多
A person is considered as information-energy system with a host of feedbacks. The possibility of determining the statistical characteristics in a multiple intelligences profile of various social groups’ representativ...A person is considered as information-energy system with a host of feedbacks. The possibility of determining the statistical characteristics in a multiple intelligences profile of various social groups’ representatives using the vibraimage technology is investigated. Theft and alcohol abuse have been chosen as examples of significant social problems including deviant behavior and the trigger of formation of various socially vulnerable groups. The comparative analysis of conscious and unconscious attitudes in multiple intelligences structure of individuals prone to deviant behavior and the control group allows differentiating professional preferences and the impact of society on different social groups.展开更多
Autonomous aerial robotics has become a hot direction ofresearch inside the community of robotics and control. Theprimary problem addressed by formation control is to steermultiple aerial robots to form desired geomet...Autonomous aerial robotics has become a hot direction ofresearch inside the community of robotics and control. Theprimary problem addressed by formation control is to steermultiple aerial robots to form desired geometric patterns and,at the same time, realize desired collective swarming behaviorsin a decentralized or distributed manner. In contrast toground vehicles, aerial robots have the ability to work inthree-dimensional (3D) airspace. Equipped with electric orhydraulic motors, the vertical take-off and landing (VTOL)capability is a typical performance of aerial robots. Formationcontrol technology for such aerial robots is incessantlyspringing up to satisfy the requirements of highly intelligentautonomous systems, which affects both military and civilareas, including missile defense, battlefield surveillance,satellite network construction, fire suppression, power gridinspection, commercial show, etc. [1–5]. Such a problem ofmultiple aerial robots formation control is exceptionallychallenging to analyze if practical constraints such as complexdynamics, motion constraints, and imperfect measurementsare incorporated.展开更多
基金supported by the National Natural Science Foundation of China(No.61473229)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University,China(Nos.310832163403 and 310832161012)+1 种基金the Key Science and Technology Program of Shaanxi Province,China(No.2017JQ6060)the Xi’an Science and Technology Plan,China(No.CXY1512-3)
文摘We propose a formation control strategy for multiple unmanned aerial vehicles (multi-UAV) based on second-order consensus, by introducing position and velocity coordination variables through neighbor-to-neighbor interaction to generate steering commands. A cooperative guidance algorithm and a cooperative control algorithm are proposed together to maintain a specified geometric configuration, managing the position and attitude respectively. With the whole system composed of the six-degree-of-freedom UAV model, tile cooperative guidance algorithm, and the cooperative control algorithm, the formation control strategy is a closed-loop one and with full states. The cooperative guidance law is a second-order consensus algorithm, providing the desired acceleration, pitch rate, and heading rate. Longitudinal and lateral motions are jointly considered, and the cooperative control law is designed by deducing state equations. Closed-loop stability of the formation is analyzed, and a necessary and sufficient condition is provided. Measurement errors in position data are suppressed by synchronization technology to improve the control precision. In the simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the formation control strategy.
文摘A person is considered as information-energy system with a host of feedbacks. The possibility of determining the statistical characteristics in a multiple intelligences profile of various social groups’ representatives using the vibraimage technology is investigated. Theft and alcohol abuse have been chosen as examples of significant social problems including deviant behavior and the trigger of formation of various socially vulnerable groups. The comparative analysis of conscious and unconscious attitudes in multiple intelligences structure of individuals prone to deviant behavior and the control group allows differentiating professional preferences and the impact of society on different social groups.
基金supported by the National Natural Science Foundation of China(Grant Nos.61673327,51606161,11602209,91441128)the Natural Science Foundation of Fujian Province,China(Grant No.2016J06011)
文摘Autonomous aerial robotics has become a hot direction ofresearch inside the community of robotics and control. Theprimary problem addressed by formation control is to steermultiple aerial robots to form desired geometric patterns and,at the same time, realize desired collective swarming behaviorsin a decentralized or distributed manner. In contrast toground vehicles, aerial robots have the ability to work inthree-dimensional (3D) airspace. Equipped with electric orhydraulic motors, the vertical take-off and landing (VTOL)capability is a typical performance of aerial robots. Formationcontrol technology for such aerial robots is incessantlyspringing up to satisfy the requirements of highly intelligentautonomous systems, which affects both military and civilareas, including missile defense, battlefield surveillance,satellite network construction, fire suppression, power gridinspection, commercial show, etc. [1–5]. Such a problem ofmultiple aerial robots formation control is exceptionallychallenging to analyze if practical constraints such as complexdynamics, motion constraints, and imperfect measurementsare incorporated.