A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a...A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.展开更多
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against ...The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
Droplet-based high heat flux dissipation technique under multi-gravitational environments has gained increasing research attention due to the increased requirements of heat dissipation in advanced air-/space-borne ele...Droplet-based high heat flux dissipation technique under multi-gravitational environments has gained increasing research attention due to the increased requirements of heat dissipation in advanced air-/space-borne electronics.In this paper,a threedimensional model was developed to investigate the impact of continuous droplets on liquid film under various Weber numbers and gravity loads.In other words,the effects of Weber number and gravity load on the flow and heat transfer characteristics were investigated.The results demonstrated that the dissipated heat flux was positively correlated with both Weber number and gravity load.A large Weber number indicated larger kinetic energy of a droplet,leading to a greater disturbance on the impacted film area.When the Weber number was doubled,the average wall heat flux could be enhanced by 36.3%.In addition,the heat flux could be boosted by 5.4%when the gravity load ranged from 0 to 1g.Moreover,a weightless condition suppressed the vapor escape rates on the heating wall where the volume fraction of the vapor on the wall could increase by 20%under 0g,leading to deteriorated heat transfer performance.The novelty in this paper lies in the accurate three-dimensional modeling of an aerospaceoriented droplet impacting two-phase heat transfer and fluid dynamics,associating macro-scale thermal performance to microscale thermophysics mechanisms.The findings of this study could guide the development of aerospace-borne spray cooling facilities for advanced aerospace thermal management.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.61273349 and 61175109)the Aeronautical Science Foundation of China(Nos.2014ZA18004 and 2013ZA18001)
文摘A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.
基金co-supported by the National Natural Science Foundation of China(Nos. 61273349 and 61573043)
文摘The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金supported by the National Natural Science Foundation of China (Grant Nos.52106114,51725602,and 52036006)。
文摘Droplet-based high heat flux dissipation technique under multi-gravitational environments has gained increasing research attention due to the increased requirements of heat dissipation in advanced air-/space-borne electronics.In this paper,a threedimensional model was developed to investigate the impact of continuous droplets on liquid film under various Weber numbers and gravity loads.In other words,the effects of Weber number and gravity load on the flow and heat transfer characteristics were investigated.The results demonstrated that the dissipated heat flux was positively correlated with both Weber number and gravity load.A large Weber number indicated larger kinetic energy of a droplet,leading to a greater disturbance on the impacted film area.When the Weber number was doubled,the average wall heat flux could be enhanced by 36.3%.In addition,the heat flux could be boosted by 5.4%when the gravity load ranged from 0 to 1g.Moreover,a weightless condition suppressed the vapor escape rates on the heating wall where the volume fraction of the vapor on the wall could increase by 20%under 0g,leading to deteriorated heat transfer performance.The novelty in this paper lies in the accurate three-dimensional modeling of an aerospaceoriented droplet impacting two-phase heat transfer and fluid dynamics,associating macro-scale thermal performance to microscale thermophysics mechanisms.The findings of this study could guide the development of aerospace-borne spray cooling facilities for advanced aerospace thermal management.