To effectively address energy challenges,it is crucial to explore efficient and stable bifunctional nonprecious metal catalysts.In this study,a Mo-doped nickeliron layered double hydroxide with flower-cluster architec...To effectively address energy challenges,it is crucial to explore efficient and stable bifunctional nonprecious metal catalysts.In this study,a Mo-doped nickeliron layered double hydroxide with flower-cluster architecture was successfully prepared by a one-step hydrothermal method,which demonstrated a good water splitting performance.After an appropriate amount of Mo doping,some lattice distortions in the material provided reactive sites for the adsorption and conversion of intermediates,thus optimising the charge distribution of the material.Moreover,the multidimensional void structures formed after doping had a larger specific surface area and accelerated the penetration of the electrolyte,which significantly improved the activity of the catalyst in alkaline media.At 10 mA·cm^(-2),the hydrogen and oxygen evolution overpotentials of Mo-doped nickel-iron double hydroxides(Mo-NiFe LDH/NF-0.2)were 167 and 220 mV,respectively,with an excellent durability up to 24 h.When the Mo-NiFe LDH/NF-0,2 catalyst was used as the cathode and anode of an electrolytic cell,the catalyst achieved a current density of 10 mA·cm^(-2)at an applied voltage of 1.643 V.This study provides a novel approach for designing excellent bifunctional electrocatalysts containing nonprecious metals.展开更多
Biomaterials such as bone,teeth,nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures.Here we report that the woodpecker's tongue exhibits a novel strength ...Biomaterials such as bone,teeth,nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures.Here we report that the woodpecker's tongue exhibits a novel strength and flexibility due to its special composite micro/nanostructure.The tongue consists of a flexible cartilage-and-bone skeleton covered with a thin layer tissue of high strength and elasticity.At the interface between the cartilage-and-bone skeleton and the tissue layer,there is a hierarchical fiber-typed connection.It is this special design of the tongue that makes the woodpeckers efficient in catching the insects inside trees.The special micro/nanostructures of the woodpecker's tongue show us a potential method to enhance the interfacial connection between soft and hard material layers for bio-inspired composite system designs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.62001189 and 51802177)the Joint Funds of the National Natural Science Foundation of China(No.U22A20140)+2 种基金the Youth Innovation Group Plan of Shandong Province(No.2022KJ095)the Plan for the Introduction and Cultivation of Young Innovative Talent in the Colleges and Universities of Shandong ProvinceSupported by Guiding Fund of Zaozhuang Industrial Technology Research Institute of University of Jinan。
文摘To effectively address energy challenges,it is crucial to explore efficient and stable bifunctional nonprecious metal catalysts.In this study,a Mo-doped nickeliron layered double hydroxide with flower-cluster architecture was successfully prepared by a one-step hydrothermal method,which demonstrated a good water splitting performance.After an appropriate amount of Mo doping,some lattice distortions in the material provided reactive sites for the adsorption and conversion of intermediates,thus optimising the charge distribution of the material.Moreover,the multidimensional void structures formed after doping had a larger specific surface area and accelerated the penetration of the electrolyte,which significantly improved the activity of the catalyst in alkaline media.At 10 mA·cm^(-2),the hydrogen and oxygen evolution overpotentials of Mo-doped nickel-iron double hydroxides(Mo-NiFe LDH/NF-0.2)were 167 and 220 mV,respectively,with an excellent durability up to 24 h.When the Mo-NiFe LDH/NF-0,2 catalyst was used as the cathode and anode of an electrolytic cell,the catalyst achieved a current density of 10 mA·cm^(-2)at an applied voltage of 1.643 V.This study provides a novel approach for designing excellent bifunctional electrocatalysts containing nonprecious metals.
基金supported by the National Natural Science Foundation of China (Projects Nos. 10672035,10802019,10721062 and 90816025).
文摘Biomaterials such as bone,teeth,nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures.Here we report that the woodpecker's tongue exhibits a novel strength and flexibility due to its special composite micro/nanostructure.The tongue consists of a flexible cartilage-and-bone skeleton covered with a thin layer tissue of high strength and elasticity.At the interface between the cartilage-and-bone skeleton and the tissue layer,there is a hierarchical fiber-typed connection.It is this special design of the tongue that makes the woodpeckers efficient in catching the insects inside trees.The special micro/nanostructures of the woodpecker's tongue show us a potential method to enhance the interfacial connection between soft and hard material layers for bio-inspired composite system designs.