基于群体智能“隐并行性”实现多任务优化已取得一系列研究成果,但任务间频繁的垂直信息传递导致种群异质性过度增加,进而产生信息负迁移消极影响,这也是目前多任务优化领域尚未完全解决的难题之一.针对此问题,首先将粒子群算法(PSO)与...基于群体智能“隐并行性”实现多任务优化已取得一系列研究成果,但任务间频繁的垂直信息传递导致种群异质性过度增加,进而产生信息负迁移消极影响,这也是目前多任务优化领域尚未完全解决的难题之一.针对此问题,首先将粒子群算法(PSO)与多种群演化信息共享机制相结合,然后引入标杆管理思想实现多层级信息迁移及智能涌现,最后通过计算种群多样性指数有效控制信息迁移频率,提出多级信息迁移多任务优化PSO算法(multi-level information transfer multi-task PSO, MITMPSO).仿真实验表明,通过设置合理的信息迁移阈值,MITMPSO能在多项式时间内显著提高多任务高维函数优化、多任务多约束函数优化以及多任务二元离散优化问题的求解质量,加快各优化问题的收敛速度.展开更多
文摘基于群体智能“隐并行性”实现多任务优化已取得一系列研究成果,但任务间频繁的垂直信息传递导致种群异质性过度增加,进而产生信息负迁移消极影响,这也是目前多任务优化领域尚未完全解决的难题之一.针对此问题,首先将粒子群算法(PSO)与多种群演化信息共享机制相结合,然后引入标杆管理思想实现多层级信息迁移及智能涌现,最后通过计算种群多样性指数有效控制信息迁移频率,提出多级信息迁移多任务优化PSO算法(multi-level information transfer multi-task PSO, MITMPSO).仿真实验表明,通过设置合理的信息迁移阈值,MITMPSO能在多项式时间内显著提高多任务高维函数优化、多任务多约束函数优化以及多任务二元离散优化问题的求解质量,加快各优化问题的收敛速度.