The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of ur...The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of urbanization zones,agricultural development zones and ecological security zones as the basic parameter,this paper explores the spatial structures of major function zoning at different scales using spatial statistics,spatial modeling and landscape metrics methods.The results show:First,major function zones have spatial gradient structures,which are prominently represented by latitudinal and longitudinal gradients,a coastal distance gradient,and an eastern-central-western gradient.Second,the pole-axis system structure and core-periphery structure exist at provincial scales.The general principle of the pole-axis structure is that as one moves along the distance axis,the proportion of urbanization zones decreases and the proportion of ecological security zones increases.This also means that the proportion of different function zones has a ring-shaped spatial differentiation principle with distance from the core.Third,there is a spatial mosaic structure at the city and county scale.This spatial mosaic structure has features of both spatial heterogeneity,such as agglomeration and dispersion,as well as of mutual,adjacent topological correlation and spatial proximity.The results of this study contribute to scientific knowledge on major function zones and the principles of spatial organization,and it acts as an important reference for China’s integrated geographical zoning.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
Discusses the necessity for China and Russia to change the existing small scale and level bilateral economic and trade relations for better by breaking away from traditional thoughts and formulating new thoughts on de...Discusses the necessity for China and Russia to change the existing small scale and level bilateral economic and trade relations for better by breaking away from traditional thoughts and formulating new thoughts on development of economic and trade relations between the two countries, and suggests the need to develop all azimuth and multi level economic and trade relations with emphasis on industrial cooperations to develop the leading industries of these two countries in accord with the strategic partnership between these two countries for the 21 century to suit the changes in the formation of new multi pole international order, and concludes the industries in these two countries can be made structurally complementary to each other and coexistent with the leading industries by developing steady and reliable industrial cooperative relations to further strengthen the strategic partnership between the two countries.展开更多
China's first quasi-periodic undulator (QPU) has been developed for the Hefei Light Source (HLS). It uses a magnetic configuration with varied thicknesses of NdFeB blocks, which is based on the QPU of European Sy...China's first quasi-periodic undulator (QPU) has been developed for the Hefei Light Source (HLS). It uses a magnetic configuration with varied thicknesses of NdFeB blocks, which is based on the QPU of European Synchrotron Radiation Facility (ESRF). The depression of 3rd harmonic radiation is significantly improved over the ESRF QPU, as deduced from the measured magnetic fields. A method of configuring shims of different geometries and sizes, based on a symmetric principle to correct multi-pole field integrals, is demonstrated.展开更多
This paper theoretically investigates the dependence of leaky mode coupling between inner core fundamental mode and outer core defect mode on phase and loss matching in pure silica dual-core photonic crystal fibres wi...This paper theoretically investigates the dependence of leaky mode coupling between inner core fundamental mode and outer core defect mode on phase and loss matching in pure silica dual-core photonic crystal fibres with the multi-pole method. The complete mode coupling can take place when both the phase and loss matching conditions are satisfied at the avoided anti-crossing wavelength. It shows the influences of cladding structure parameters including the diameters of cladding air holes d1, diameters of outer core holes d2 and hole to hole pitch A on the characteristics of leaky modes coupling. The coupled-mode theory is used to analyse the mode transition characteristics and the complete coupling can be clearly indicated by comparing the real and imaginary parts of propagation constant of the leaky modes.展开更多
基金National Natural Science Foundation of China,No.41630644Innovative Think-tank Foundation for Young Scientists of China Association for Science and Technology,No.DXB-ZKQN-2017-048。
文摘The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of urbanization zones,agricultural development zones and ecological security zones as the basic parameter,this paper explores the spatial structures of major function zoning at different scales using spatial statistics,spatial modeling and landscape metrics methods.The results show:First,major function zones have spatial gradient structures,which are prominently represented by latitudinal and longitudinal gradients,a coastal distance gradient,and an eastern-central-western gradient.Second,the pole-axis system structure and core-periphery structure exist at provincial scales.The general principle of the pole-axis structure is that as one moves along the distance axis,the proportion of urbanization zones decreases and the proportion of ecological security zones increases.This also means that the proportion of different function zones has a ring-shaped spatial differentiation principle with distance from the core.Third,there is a spatial mosaic structure at the city and county scale.This spatial mosaic structure has features of both spatial heterogeneity,such as agglomeration and dispersion,as well as of mutual,adjacent topological correlation and spatial proximity.The results of this study contribute to scientific knowledge on major function zones and the principles of spatial organization,and it acts as an important reference for China’s integrated geographical zoning.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
文摘Discusses the necessity for China and Russia to change the existing small scale and level bilateral economic and trade relations for better by breaking away from traditional thoughts and formulating new thoughts on development of economic and trade relations between the two countries, and suggests the need to develop all azimuth and multi level economic and trade relations with emphasis on industrial cooperations to develop the leading industries of these two countries in accord with the strategic partnership between these two countries for the 21 century to suit the changes in the formation of new multi pole international order, and concludes the industries in these two countries can be made structurally complementary to each other and coexistent with the leading industries by developing steady and reliable industrial cooperative relations to further strengthen the strategic partnership between the two countries.
文摘China's first quasi-periodic undulator (QPU) has been developed for the Hefei Light Source (HLS). It uses a magnetic configuration with varied thicknesses of NdFeB blocks, which is based on the QPU of European Synchrotron Radiation Facility (ESRF). The depression of 3rd harmonic radiation is significantly improved over the ESRF QPU, as deduced from the measured magnetic fields. A method of configuring shims of different geometries and sizes, based on a symmetric principle to correct multi-pole field integrals, is demonstrated.
基金Project supported by the National Key Basic Research Special Foundation of China (Grant No. 2010CB327605)the National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220)+2 种基金the Key Grant of the Chinese Ministry of Education (Grant No. 109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education (Grant No. YB20081001301)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education,and the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023)
文摘This paper theoretically investigates the dependence of leaky mode coupling between inner core fundamental mode and outer core defect mode on phase and loss matching in pure silica dual-core photonic crystal fibres with the multi-pole method. The complete mode coupling can take place when both the phase and loss matching conditions are satisfied at the avoided anti-crossing wavelength. It shows the influences of cladding structure parameters including the diameters of cladding air holes d1, diameters of outer core holes d2 and hole to hole pitch A on the characteristics of leaky modes coupling. The coupled-mode theory is used to analyse the mode transition characteristics and the complete coupling can be clearly indicated by comparing the real and imaginary parts of propagation constant of the leaky modes.