期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
改进的模块2DPCA人脸识别算法 被引量:7
1
作者 张岩 武玉强 《计算机工程》 CAS CSCD 北大核心 2011年第7期228-230,共3页
提出一种改进的模块2DPCA人脸识别算法,即基于子距离的模块2DPCA人脸识别算法。该算法对图像进行分块,对每一子块独立地利用2DPCA进行处理,求出测试样本子块与训练样本对应子块间的子距离,将所有子距离相加得到测试样本与训练样本的距离... 提出一种改进的模块2DPCA人脸识别算法,即基于子距离的模块2DPCA人脸识别算法。该算法对图像进行分块,对每一子块独立地利用2DPCA进行处理,求出测试样本子块与训练样本对应子块间的子距离,将所有子距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库上的实验结果表明,该算法在识别性能上优于普通的模块2DPCA算法和修正的模块2DPCA算法。 展开更多
关键词 二维主成分分析 子距离 模块二维主成分分析 特征提取 人脸识别
下载PDF
一种模块化2DPCA和CSLDA相结合的人脸验证算法 被引量:6
2
作者 袁宁 吴小俊 +2 位作者 王士同 杨静宇 Josef Kittler 《计算机研究与发展》 EI CSCD 北大核心 2008年第6期1029-1035,共7页
在CSLDA方法的基础上进行改进,和模块化2DPCA相结合,提出了一种模块化2DPCA+CSLDA的人脸验证方法.CSLDA将图像矩阵转化为向量进行处理,数据维数很大,计算复杂,对图像整体处理没有考虑到图像的局部特征.针对这些缺点,新方法从原始数据出... 在CSLDA方法的基础上进行改进,和模块化2DPCA相结合,提出了一种模块化2DPCA+CSLDA的人脸验证方法.CSLDA将图像矩阵转化为向量进行处理,数据维数很大,计算复杂,对图像整体处理没有考虑到图像的局部特征.针对这些缺点,新方法从原始数据出发,对二维数据进行分块后采用2DPCA进行特征抽取,能有效抽取图像的局部特征,得到替代原始图像的低维的新模式.然后对新模式施行CSLDA,即基于客户相关子空间的线性判别分析方法,不仅考虑到类内、类间的差异,弥补了PCA的缺陷;而且客户相关(CS)子空间可以较好地描述不同个体人脸之间的差异性,比传统的个体特征脸具有更好的判别能力.在XM2VTS人脸库上按照Lausanne协议和ORL库上对原CSLDA和新方法进行评价和测试的结果表明,新方法在验证效果上优于CSLDA方法. 展开更多
关键词 CSLDA 模块化2dpca 线性判别分析 特征抽取 客户相关 人脸验证
下载PDF
基于分块2DPCA的人脸识别方法 被引量:6
3
作者 邓亚平 王敏 《计算机工程与设计》 CSCD 北大核心 2014年第9期3229-3233,共5页
为进一步提高分块二维主成分分析(2DPCA)算法在人脸识别的识别率,提出一种人脸识别算法。将训练样本人脸矩阵按光照等相似条件进行分块并进行类内平均归一化;采用2DPCA算法构造特征空间,将分块矩阵在特征空间中进行投影得到训练样本识... 为进一步提高分块二维主成分分析(2DPCA)算法在人脸识别的识别率,提出一种人脸识别算法。将训练样本人脸矩阵按光照等相似条件进行分块并进行类内平均归一化;采用2DPCA算法构造特征空间,将分块矩阵在特征空间中进行投影得到训练样本识别特征,利用支持向量机(SVM)在分类上的优势,对训练样本识别特征和经过归一化分块2DPCA的测试样本识别特征进行分类,对人脸图像进行识别。选取ORL人脸数据库的图片进行实验,将该算法与传统2DPCA、2DPCA+SVM等算法进行比较,验证了该算法的性能优于其它算法。 展开更多
关键词 分块 二维主成分分析 支持向量机 类内平均 人脸识别
下载PDF
改进的分块2DPCA人脸识别方法 被引量:3
4
作者 吴天德 戴在平 《通信技术》 2011年第10期52-54,共3页
将样本中间值融入模块二维主成分分析方法进行人脸识别。该算法首先对图像矩阵进行了模块化得到子图像矩阵,之后直接把子图像矩阵集作为样本集。与原始模块二维主成分分析算法不同之处在于,将子块的类内中间值引入到总体协方差矩阵的求... 将样本中间值融入模块二维主成分分析方法进行人脸识别。该算法首先对图像矩阵进行了模块化得到子图像矩阵,之后直接把子图像矩阵集作为样本集。与原始模块二维主成分分析算法不同之处在于,将子块的类内中间值引入到总体协方差矩阵的求解过程中。通过ORL数据库的测试,融合后的算法继承了模块二维主成分分析的强鲁棒性,提高了识别率,证明了改进后的方法相对普通的二维主成分分析和模块二维主成分分析算法而言,性能得到提升。 展开更多
关键词 模块2dpca 类内中间值 人脸识别 特征抽取
原文传递
基于AMD度量和类间模块2DPCA的人脸识别算法 被引量:2
5
作者 李小红 李寅 +1 位作者 张静 金建 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第7期1015-1018,共4页
文章提出了一种基于集成矩阵距离(AMD)和类间散布矩阵构造的模块2DPCA人脸识别方法。针对原模块2DPCA算法的不足,使用类间散布矩阵代替总体散布矩阵,求得最佳特征向量并对图像进行特征提取;采用集成矩阵距离的度量方式计算特征图像的相... 文章提出了一种基于集成矩阵距离(AMD)和类间散布矩阵构造的模块2DPCA人脸识别方法。针对原模块2DPCA算法的不足,使用类间散布矩阵代替总体散布矩阵,求得最佳特征向量并对图像进行特征提取;采用集成矩阵距离的度量方式计算特征图像的相似度,实现人脸分类。在ORL人脸库上的实验结果表明,同2DPCA和普通模块2DPCA相比,文中提出的方法能够取得更好的识别效果。 展开更多
关键词 人脸识别 模块2dpca 类间散布矩阵 集成矩阵距离
下载PDF
基于分块2DPCA的人脸表情识别 被引量:1
6
作者 张楠 《山东轻工业学院学报(自然科学版)》 CAS 2007年第1期8-10,17,共4页
本文使用了分块二维主成份分析法(分块2DPCA)和模糊积分分类器进行了人脸表情识别与融合。由于分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其突出的优点是提高了特征提取的速度,在特征提取时可以完全... 本文使用了分块二维主成份分析法(分块2DPCA)和模糊积分分类器进行了人脸表情识别与融合。由于分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其突出的优点是提高了特征提取的速度,在特征提取时可以完全避免使用矩阵的奇异值分解,方法简便。与2DPCA相比,可以实现使用低维的鉴别特征,而保持较高的正确识别率的目的。 展开更多
关键词 人脸表情识别 分块2dpca 模糊积分
下载PDF
基于模块化2DPCA和CSKDA的人脸验证
7
作者 袁宁 吴小俊 +2 位作者 王士同 杨静宇 Josef Kittler 《计算机工程》 CAS CSCD 北大核心 2009年第7期172-174,205,共4页
针对客户相关的核判别分析(CSKDA)对图像列向量进行处理数据维数大、计算复杂,对图像整体处理没有考虑到局部特征等缺点,提出M2DPCA和CSKDA结合的方法。新方法对二维数据进行分块后采用2DPCA抽取局部特征,施行CSKDA,不仅考虑了类内、类... 针对客户相关的核判别分析(CSKDA)对图像列向量进行处理数据维数大、计算复杂,对图像整体处理没有考虑到局部特征等缺点,提出M2DPCA和CSKDA结合的方法。新方法对二维数据进行分块后采用2DPCA抽取局部特征,施行CSKDA,不仅考虑了类内、类间的差异,而且可以较好地描述不同个体人脸间的差异性。在XM2VTS和ORL人脸库上的实验结果表明,该方法在验证效果上优于CSKDA方法。 展开更多
关键词 客户相关的核判别分析 模块化2dpca 特征抽取 人脸验证
下载PDF
基于模块2DPCA的人脸识别方法 被引量:61
8
作者 陈伏兵 陈秀宏 +1 位作者 张生亮 杨静宇 《中国图象图形学报》 CSCD 北大核心 2006年第4期580-585,共6页
提出了模块2DPCA(two-d im ensional princ ipal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于... 提出了模块2DPCA(two-d im ensional princ ipal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。 展开更多
关键词 线性鉴别分析 模块2dpca 特征抽取 人脸识别
下载PDF
二维主成分分析方法的推广及其在人脸识别中的应用 被引量:20
9
作者 陈伏兵 陈秀宏 +1 位作者 高秀梅 杨静宇 《计算机应用》 CSCD 北大核心 2005年第8期1767-1770,共4页
提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方... 提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。 展开更多
关键词 线性鉴别分析 特征抽取 分块二维主成分分析 特征矩阵 人脸识别
下载PDF
基于小波变换和多特征融合算法的人脸识别 被引量:4
10
作者 关学忠 王文锋 +2 位作者 张新城 尹廷武 张璐 《计算机工程与应用》 CSCD 北大核心 2016年第12期201-204,共4页
提出了基于小波变换和多特征融合算法的人脸识别方法。该方法先对原始人脸图像进行简单加权小波变换以降低维数,施行改进的模块二维主成分分析(M2DPCA)抽取特征,再进行加权最大散度差鉴别分析(WMSD)得到最终的特征图像,采用最近邻分类... 提出了基于小波变换和多特征融合算法的人脸识别方法。该方法先对原始人脸图像进行简单加权小波变换以降低维数,施行改进的模块二维主成分分析(M2DPCA)抽取特征,再进行加权最大散度差鉴别分析(WMSD)得到最终的特征图像,采用最近邻分类器对人脸分类识别。该方法不仅利用了人脸图像的局部特征和类别信息,而且避免了矩阵的奇异值分解可能遇到的问题。在ORL人脸库上实验,以验证该方法的有效性。 展开更多
关键词 简单加权小波变换 模块二维主成分分析(M2dpca) 加权最大散度差鉴别分析(WMSD)
下载PDF
分块二维主成分分析鉴别特征抽取能力研究 被引量:1
11
作者 陈伏兵 韦相和 +1 位作者 严云洋 杨静宇 《计算机工程与应用》 CSCD 北大核心 2006年第27期69-72,75,共5页
基于二维主成分分析(2DPCA),文章提出了分块二维主成分分析(M2DPCA)人脸识别方法。M2DPCA从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用2DPCA方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽... 基于二维主成分分析(2DPCA),文章提出了分块二维主成分分析(M2DPCA)人脸识别方法。M2DPCA从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用2DPCA方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在ORL人脸数据库上测试了该方法的鉴别能力。实验的结果表明,M2DPCA在鉴别性能上优于通常的2DPCA和PCA方法,也优于基于Fisher鉴别准则的鉴别分析方法:Fisherfaces方法、F-S方法和J-Y方法。 展开更多
关键词 线性鉴别分析 特征抽取 二维主成分分析 分块二维主成分分析 人脸识别
下载PDF
改进的模块2DPCA与MSD结合的人脸识别 被引量:2
12
作者 孔爱祥 王成儒 《计算机工程与应用》 CSCD 2014年第2期175-178,197,共5页
提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的... 提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的局部特征和类别信息,而且完全避免了使用矩阵的奇异值分解。在ORL人脸库上的实验结果验证了该方法的有效性。 展开更多
关键词 模块二维主成分分析(2dpca) 最大散度差鉴别分析 人脸识别
下载PDF
一种M2DPCA和NSA相结合的人脸识别方法 被引量:1
13
作者 戴飞 陈秀宏 《计算机工程与应用》 CSCD 2012年第5期174-176,共3页
将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替... 将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替代原始图像的低维新模式,施行NSA。该法能有效提取图像的局部特征,而由于考虑到类内、类间的差异,可弥补PCA的缺陷。在ORL人脸库和XM2VTS人脸库上对LDA方法、NSA方法以及该方法分别进行了评价和测试,结果显示,所提方法在识别效果上优于LDA方法和NSA方法。 展开更多
关键词 模块化二维主元成分分析法(M2dpca) 非参数子空间分析方法(NSA) 特征提取 人脸识别
下载PDF
一种融合模块2DPCA与PCA的人脸识别方法 被引量:2
14
作者 黄海波 全海燕 谢鹏 《郑州轻工业学院学报(自然科学版)》 CAS 2013年第6期81-85,共5页
针对主成分分析(PCA)求解高阶矩阵计算量很大和模块二维主成分分析(M2DPCA)特征数量仍然较大且有一定的相关性的问题,提出了融合模块2DPCA与PCA的方法进行人脸识别.该方法先通过M2DPCA对子图像进行特征提取,然后把每个图像中的子图像按... 针对主成分分析(PCA)求解高阶矩阵计算量很大和模块二维主成分分析(M2DPCA)特征数量仍然较大且有一定的相关性的问题,提出了融合模块2DPCA与PCA的方法进行人脸识别.该方法先通过M2DPCA对子图像进行特征提取,然后把每个图像中的子图像按分块的顺序重新组成新的矩阵,再对新的矩阵进行PCA.在ORL人脸库中实验,结果表明,该算法在一定程度上去除了特征参数间的相关性并大大减少了特征维数. 展开更多
关键词 模块二维主成分分析 主成分分析 特征提取 人脸识别
下载PDF
M2DPCA与CCLDA相结合的人脸识别
15
作者 冯华丽 刘渊 《计算机工程与应用》 CSCD 2014年第12期129-132,143,共5页
CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VT... CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VTS人脸库上的实验结果表明,新方法在识别效果上有比以往的算法更为明显的优势。 展开更多
关键词 上下文约束 模块化二维主成分分析(M2dpca) 基于上下文约束线性判别分析(CCLDA) 人脸识别
下载PDF
基于DCT与改进分块2DPCA算法的人脸识别
16
作者 路翀 乎西旦 +1 位作者 尼亚孜别克 聂东 《现代计算机(中旬刊)》 2011年第6期17-21,28,共6页
提出一种离散余弦变换和改进的分块二维主元分析相结合的人脸识别方法。该算法利用DCT压缩人脸图像以去掉人眼不敏感的中频分量与高频分量,这样有效降低所需特征的维数,减少计算量。通过IM2DPCA进行特征提取得到人脸识别特征,运用最近... 提出一种离散余弦变换和改进的分块二维主元分析相结合的人脸识别方法。该算法利用DCT压缩人脸图像以去掉人眼不敏感的中频分量与高频分量,这样有效降低所需特征的维数,减少计算量。通过IM2DPCA进行特征提取得到人脸识别特征,运用最近邻分类器完成人脸的识别。在基于ORL、YaleB、CAS-PEAL及Feret人脸数据库的实验结果证明该算法的有效性与稳健性。 展开更多
关键词 离散余弦变换 改进的分块二维主元分析 人脸识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部