Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance w...Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance were analyzed after the zero-order component of the traveling wave of online cable was selected to serve as the observed object.Finally,the new recognition algorithm of minimum risk neural network was pre- sented.The simulation experiments show that the recognitions of the early fault states can be completed correctly by using the proposed recognition algorithm.The classes of cable faults include in 1-phase ground faults,and the 2-phase short circuit faults or ground faults and the 3-phase short circuit faults or ground faults,open circuit.The fault resistance range is 1×10^(-1)~1×10~9Ω.展开更多
In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interact...In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interacting by Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and the molecular interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the mean phase space molecular volume that far-from-equilibrium shows maximizing the dissipation of a part of the generalized SQHA-free energy. In the case of a real gas with no chemical reactions with small temperature gradients, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs of electro-convective instability. In this case, the model shows that the transition to stationary states with higher free energy can happen and that in incompressible fluids, the increase of free energy is almost given by a decrease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the generation of order via energy dissipation, is more efficient in fluids than in gases, because of their incompressibility, which leads to the reconciliation between physics and biology furnishing the explanation why the life was born in water. The theoretical output also suggests that the search for life out of the earth must consider the possibility to find it in presence of liquid phases different from water.展开更多
A digraph D is oriented if it does not contain 2-cycles. If an oriented digraph D has a directed eulerian path, it is an oriented eulerian digraph. In this paper, when an oriented eulerian digraph D has minimum out-de...A digraph D is oriented if it does not contain 2-cycles. If an oriented digraph D has a directed eulerian path, it is an oriented eulerian digraph. In this paper, when an oriented eulerian digraph D has minimum out-degree 2 and a diameter d, we find the minimum order of D. In addition, when D is 2-regular with diameter 4rn (m≥2), we classify the extremal cases.展开更多
When running an experiment, inhomogeneity of the experimental units may result in poor estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the experiment. Mostly, a s...When running an experiment, inhomogeneity of the experimental units may result in poor estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the experiment. Mostly, a single block variable was used in the literature to treat the inhomogeneity for simplicity. However, in practice, the inhomogeneity often comes from multi block variables. Recently, a new criterion called B2-GMC was proposed for two-level regular designs with multi block variables. This paper proposes a systematic theory on constructing some B^2-GMC designs for the first time. Experimenters can easily obtain the B^2-GMC designs according to the construction method. Pros of B^2-GMC designs are highlighted in Section 4, and the designs with small run sizes are tabulated in Appendix B for practical use.展开更多
基金the Science and Technology Foundation of Shaanxi Province in China(2003K06G19)
文摘Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance were analyzed after the zero-order component of the traveling wave of online cable was selected to serve as the observed object.Finally,the new recognition algorithm of minimum risk neural network was pre- sented.The simulation experiments show that the recognitions of the early fault states can be completed correctly by using the proposed recognition algorithm.The classes of cable faults include in 1-phase ground faults,and the 2-phase short circuit faults or ground faults and the 3-phase short circuit faults or ground faults,open circuit.The fault resistance range is 1×10^(-1)~1×10~9Ω.
文摘In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interacting by Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and the molecular interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the mean phase space molecular volume that far-from-equilibrium shows maximizing the dissipation of a part of the generalized SQHA-free energy. In the case of a real gas with no chemical reactions with small temperature gradients, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs of electro-convective instability. In this case, the model shows that the transition to stationary states with higher free energy can happen and that in incompressible fluids, the increase of free energy is almost given by a decrease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the generation of order via energy dissipation, is more efficient in fluids than in gases, because of their incompressibility, which leads to the reconciliation between physics and biology furnishing the explanation why the life was born in water. The theoretical output also suggests that the search for life out of the earth must consider the possibility to find it in presence of liquid phases different from water.
基金Supported by the University of Incheon Research Grant in 2009-2010
文摘A digraph D is oriented if it does not contain 2-cycles. If an oriented digraph D has a directed eulerian path, it is an oriented eulerian digraph. In this paper, when an oriented eulerian digraph D has minimum out-degree 2 and a diameter d, we find the minimum order of D. In addition, when D is 2-regular with diameter 4rn (m≥2), we classify the extremal cases.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271205,11371223,11431006 and 11601244the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20130031110002+1 种基金the“131”Talents Program of Tianjinthe Program for Scientific Research Innovation Team in Applied Probability and Statistics of Qufu Normal University under Grant No.0230518
文摘When running an experiment, inhomogeneity of the experimental units may result in poor estimations of treatment effects. Thus, it is desirable to select a good blocked design before running the experiment. Mostly, a single block variable was used in the literature to treat the inhomogeneity for simplicity. However, in practice, the inhomogeneity often comes from multi block variables. Recently, a new criterion called B2-GMC was proposed for two-level regular designs with multi block variables. This paper proposes a systematic theory on constructing some B^2-GMC designs for the first time. Experimenters can easily obtain the B^2-GMC designs according to the construction method. Pros of B^2-GMC designs are highlighted in Section 4, and the designs with small run sizes are tabulated in Appendix B for practical use.