In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms,we carried out numerical experiments on cases of severe convection in the Jianghuai...In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms,we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28,2015.The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields,and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms.When the wind field in the middle or lower troposphere is weakened,the development of convective storms attenuates to some extent compared with that in the control experiment,and the ways of attenuation in the two experiments are different.In the attenuation test of wind field at the middle level,convective storms obviously weaken at all stages in its development,while for the wind field at the low level,the convective storms weaken only in the initial stage of storm.On the contrary,the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection,especially the enhancement in the middle troposphere.In contrast,the convective storms develop rapidly in this test,as the most intensive one.The wind field variations have significant impacts on the structure and organization of the storm.The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm,the reduction of the storm scale,and the organized evolution of convective storms.The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.展开更多
Using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data at 1°× 1° o resolution, analysis is performed on a persistent heavy rainfall event w...Using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data at 1°× 1° o resolution, analysis is performed on a persistent heavy rainfall event with two rain bands to the south of the Yangtze River during 17-22 June 2005. The northern rain band was related to the atmospheric mass adjustment of cold front precipitation and the associated ageostrophic feature to the rear right of subtropical westerly jets, while the southern counterpart formed under the joint influence of easterly/westerly jets and the South Asian high (SAH). The ageostrophic wind field to the rear right of the easterly jet center gives rise to an anti-circulation that favors the genesis of the southern belt. The feature ofdu/dt 〈0 around the SAH ridge line and to the rear right of the easterly jet streak results in a strong v - vg〈O field in the vicinity of the rain region as well as to its south. When westerly jets move southward, an intense v Vg〉0 feature appears to the north of the rain region, i.e., behind the center of the westerly jets. The associated mass adjustment leads to vigorous divergence over the rain region, which is responsible for the strong precipitation from the warm sector of the front. Also, a θe front at the middle level of the southern rain band and the cold front favor the release of instable energy to enhance the rainstorm. The southern and northern fronts approach each other and the two rain belts merge into one.展开更多
基金National Key R&D Program of China(2017YFC1502104)“333 Project”Program of Jiangsu(BRA2018100)
文摘In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms,we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28,2015.The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields,and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms.When the wind field in the middle or lower troposphere is weakened,the development of convective storms attenuates to some extent compared with that in the control experiment,and the ways of attenuation in the two experiments are different.In the attenuation test of wind field at the middle level,convective storms obviously weaken at all stages in its development,while for the wind field at the low level,the convective storms weaken only in the initial stage of storm.On the contrary,the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection,especially the enhancement in the middle troposphere.In contrast,the convective storms develop rapidly in this test,as the most intensive one.The wind field variations have significant impacts on the structure and organization of the storm.The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm,the reduction of the storm scale,and the organized evolution of convective storms.The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.
基金National Program on Basic Research Project (973 Program) (2009CB421503)Natural Science Foundation of China (40975037)Natural Science Foundation of China (40775033)
文摘Using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data at 1°× 1° o resolution, analysis is performed on a persistent heavy rainfall event with two rain bands to the south of the Yangtze River during 17-22 June 2005. The northern rain band was related to the atmospheric mass adjustment of cold front precipitation and the associated ageostrophic feature to the rear right of subtropical westerly jets, while the southern counterpart formed under the joint influence of easterly/westerly jets and the South Asian high (SAH). The ageostrophic wind field to the rear right of the easterly jet center gives rise to an anti-circulation that favors the genesis of the southern belt. The feature ofdu/dt 〈0 around the SAH ridge line and to the rear right of the easterly jet streak results in a strong v - vg〈O field in the vicinity of the rain region as well as to its south. When westerly jets move southward, an intense v Vg〉0 feature appears to the north of the rain region, i.e., behind the center of the westerly jets. The associated mass adjustment leads to vigorous divergence over the rain region, which is responsible for the strong precipitation from the warm sector of the front. Also, a θe front at the middle level of the southern rain band and the cold front favor the release of instable energy to enhance the rainstorm. The southern and northern fronts approach each other and the two rain belts merge into one.