In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical in...In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.展开更多
The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compar...The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.展开更多
The NiTip/1060Al composites were prepared using a pre-aging and friction stir method(FSP)to enhance the low-temperature damping performance of the aluminum alloy and accommodate various service temperatures.The bondin...The NiTip/1060Al composites were prepared using a pre-aging and friction stir method(FSP)to enhance the low-temperature damping performance of the aluminum alloy and accommodate various service temperatures.The bonding between NiTi particles and the 1060Al matrix is well established after FSP,and no new phases are formed in the composites.The phasetransformation peak temperature of NiTip/1060Al composites gradually shifts to lower temperatures with increased aging temperature of NiTi particles.At room temperature,the 550℃-NiTip/1060Al composite exhibits superior damping performance,with an internal friction value 144%higher than that of the FSP-1060Al alloy.However,at-91℃,the 650℃-NiTip/1060Al composite demonstrates better damping performance,with an internal friction value 158%higher than that of the FSP-1060Al alloy.The NiTip/1060Al composites exhibit the internal friction peak of NiTi phase-transformation in the temperature range from-91℃to 60℃.This characteristic results in significantly better damping performance compared to the FSP-1060Al alloy and other high-damping aluminum matrix composites.展开更多
基金supported in part by the National Natural Science Foundation of China(62073003,72131001)Hong Hong Research Grants Council under GRF grants(16200619,16201120,16205421,1620-3922)Shenzhen-Hong Kong-Macao Science and Technology Innovation Fund(SGDX20201103094600006)。
文摘In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.
基金Projects(2019JJ60050,2018JJ3121) supported by the Natural Science Foundation of Hunan Province,ChinaProject(KFBM20170004) supported by the Jiangsu Province Key Laboratory of Materials Surface Science and Technology,China
文摘The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.
基金supported by the National Natural Science Foundation of China(Grant No.52061011)the Guangxi Natural Science Foundation(Grant No.2022GXNSFAA035574)the Science and Technology Project of Guangxi(Grant No.GKAD22035039)。
文摘The NiTip/1060Al composites were prepared using a pre-aging and friction stir method(FSP)to enhance the low-temperature damping performance of the aluminum alloy and accommodate various service temperatures.The bonding between NiTi particles and the 1060Al matrix is well established after FSP,and no new phases are formed in the composites.The phasetransformation peak temperature of NiTip/1060Al composites gradually shifts to lower temperatures with increased aging temperature of NiTi particles.At room temperature,the 550℃-NiTip/1060Al composite exhibits superior damping performance,with an internal friction value 144%higher than that of the FSP-1060Al alloy.However,at-91℃,the 650℃-NiTip/1060Al composite demonstrates better damping performance,with an internal friction value 158%higher than that of the FSP-1060Al alloy.The NiTip/1060Al composites exhibit the internal friction peak of NiTi phase-transformation in the temperature range from-91℃to 60℃.This characteristic results in significantly better damping performance compared to the FSP-1060Al alloy and other high-damping aluminum matrix composites.