期刊文献+

用lifting方法构造具有线性相位的双正交小波 被引量:3

LIFTING-SCHEME-CONSTRUCTED WAVELETS: ORTHOGONALITY AND LINEAR-PHASE PROPERTY
下载PDF
导出
摘要 Lifting作为第2代小波的构造方法,同样能够构造出第1代小波。与传统的Daubechies方法相比,该方法简单易懂,并且容易用格状结构(Lattice structrue)构造出满足特定要求的小波。该文首先根据Lawton矩阵的性质证明了几乎所有由此方法构造出的小波满足双正交条件,然后考虑如何构造具有线性相位性质的双正交小波,最后列举几个例子说明lifting方法。 Lifting scheme, which is a new approach of constructing the second-generation wavelets, can also be used to construct first-generation ones. Compared with Daubechies's construction approach, lifting scheme can easily be grasped by readers who are not well equipped with Fourier analysis. The following fact will be proved using Lawton matrix in this paper: almost all wavelets constructed using lifting scheme satisfy the biorthogonal condition. Another topic in this paper is to ensure linear-phase property of new ones. Some examples are given to demonstrate how to construct linear-phase biorthogonal wavelets.
出处 《电子与信息学报》 EI CSCD 北大核心 2002年第4期486-491,共6页 Journal of Electronics & Information Technology
关键词 Lfiting方法 双正交小波 Lawton矩阵 完全重构 线性相位 Lifting scheme, Biorthogonal wavelets, Lawton matrix, Perfect reconstruction,Linear phase
  • 相关文献

参考文献9

  • 1[1]I. Daubechies, Orthogonal bases of compactly supported wavelets, Commu. Pure Appl.Math.1988, 41(7), 909-996. 被引量:1
  • 2[2]I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps, J. Fourier Anal.Appl., 1998, 4(3), 247-269. 被引量:1
  • 3[3]W. Sweldens, The lifting scheme: A construction of second generation wavelets, SIAM J.Math.Anal., 1997, 29(2), 511-546. 被引量:1
  • 4[4]W. Sweldens, The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl.Comput. Harmon. Anal., 1996, 3(2), 186-260. 被引量:1
  • 5[5]L. Lounsbery, T. D. DeRose, J. Warren, Multiresolution surfaces of arbitrary topological type,ACM Trans. on Graphics, 1997, 16(1), 34-73. 被引量:1
  • 6[6]W. Lawton, Tight frames of compactly supported wavelets, J. Math. Phys., 1990, 31(8), 1898-1901. 被引量:1
  • 7[7]W. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, J.Math. Phys., 1991, 32(1), 57-61. 被引量:1
  • 8[8]A. Cohen, I. Daubechies, Biorthogonal bases of compactly supported wavelets, Commu. Pure Appl. Math. 1992, 45, 485-560. 被引量:1
  • 9[9]T.Q. Nguyen, P. P. Vaidyanathan, Two-channel perfect-reconstruction FIR QMF structrucs which yield linear-phase analysis and synthesis filters, IEEE Trans. on ASSP, 1989, 37(5), 676-690. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部