Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^...Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.展开更多
By using Gerstewitz functions, we establish a new equilibrium version of Ekeland varia- tional principle, which improves the related results by weakening both the lower boundedness and the lower semi-continuity of the...By using Gerstewitz functions, we establish a new equilibrium version of Ekeland varia- tional principle, which improves the related results by weakening both the lower boundedness and the lower semi-continuity of the objective bimaps. Applying the new version of Ekeland principle, we obtain some existence theorems on solutions for set-valued vector equilibrium problems, where the most used assumption on compactness of domains is weakened. In the setting of X complete metric spaces (Z, d), we present an existence result of solutions for set-valued vector equilibrium problems, which only requires that the domain X C Z is countably compact in any Hausdorff topology weaker than that induced by d. When (Z, d) is a Fechet space (i.e., a complete metrizable locally convex space), our existence result only requires that the domain C Z is weakly compact. Furthermore, in the setting of non-compact domains, we deduce several existence theorems on solutions for set-valued vector equilibrium problems, which extend and improve the related known results.展开更多
The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses ...The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.展开更多
基金the Applied Research Project of Sichuan Province(05JY029-009-1)
文摘Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.
基金Supported by National Natural Science Foundation of China(Grant Nos.11471236 and 11561049)
文摘By using Gerstewitz functions, we establish a new equilibrium version of Ekeland varia- tional principle, which improves the related results by weakening both the lower boundedness and the lower semi-continuity of the objective bimaps. Applying the new version of Ekeland principle, we obtain some existence theorems on solutions for set-valued vector equilibrium problems, where the most used assumption on compactness of domains is weakened. In the setting of X complete metric spaces (Z, d), we present an existence result of solutions for set-valued vector equilibrium problems, which only requires that the domain X C Z is countably compact in any Hausdorff topology weaker than that induced by d. When (Z, d) is a Fechet space (i.e., a complete metrizable locally convex space), our existence result only requires that the domain C Z is weakly compact. Furthermore, in the setting of non-compact domains, we deduce several existence theorems on solutions for set-valued vector equilibrium problems, which extend and improve the related known results.
基金Project supported by the National Natural Science Foundation of China (Nos. 10571150 and 10271053)
文摘The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.