In this study,the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete(UHPC)composite beams are investigated,where a cluster UHPC slab(CUS)and a norma...In this study,the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete(UHPC)composite beams are investigated,where a cluster UHPC slab(CUS)and a normal UHPC slab(NUS)are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets,respectively.Results show that the longitudinal shear force of the CUS is greater than that of the NUS,whereas the interfacial slip of the former is smaller.Owing to its better integrity,the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS.To further optimize the design parameters of the CUS,a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances.The square shear pocket is shown to be more applicable for the CUS,as the optimal spacing between two shear pockets is 650 mm.Moreover,a design method for transverse reinforcement is proposed;the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking.According to calculation results,the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant No.U1934205)the Natural Science Foundation of Jiangsu Province(Nos.18KJA580005,19KJA570001,and YSZX-02-2022-01-B).
文摘In this study,the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete(UHPC)composite beams are investigated,where a cluster UHPC slab(CUS)and a normal UHPC slab(NUS)are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets,respectively.Results show that the longitudinal shear force of the CUS is greater than that of the NUS,whereas the interfacial slip of the former is smaller.Owing to its better integrity,the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS.To further optimize the design parameters of the CUS,a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances.The square shear pocket is shown to be more applicable for the CUS,as the optimal spacing between two shear pockets is 650 mm.Moreover,a design method for transverse reinforcement is proposed;the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking.According to calculation results,the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.