A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of r...A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of leastsquares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the onestep local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.展开更多
In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and ...In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.展开更多
Letf(x) be the density of a design variableX andm(x) = E[Y∣X = x] the regression function. Thenm(x) = G(x)/f(x), whereG(x) = rn(x)f(x). The Dirac δ-function is used to define a generalized empirical functionG n(x) f...Letf(x) be the density of a design variableX andm(x) = E[Y∣X = x] the regression function. Thenm(x) = G(x)/f(x), whereG(x) = rn(x)f(x). The Dirac δ-function is used to define a generalized empirical functionG n(x) forG(x) whose expectation equalsG(x). This generalized empirical function exists only in the space of Schwartz distributions, so we introduce a local polynomial of orderp approximation toG n(.) which provides estimators of the functionG(x) and its derivatives. The densityf(x) can be estimated in a similar manner. The resulting local generalized empirical estimator (LGE ) ofm(x) is exactly the Nadaraya-Watson estimator at interior points whenp = 1, but on the boundary the estimator automatically corrects the boundary effect. Asymptotic normality of the estimator is established. Asymptotic expressions for the mean squared errors are obtained and used in bandwidth selection. Boundary behavior of the estimators is investigated in details. We use Monte Carlo simulations to show that the proposed estimator withp = 1 compares favorably with the Nadaraya-Watson and the popular local linear regression smoother.展开更多
This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very m...This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.展开更多
We study tile local linear estimator for tile drift coefficient of stochastic differential equations driven by α-stable Levy motions observed at discrete instants. Under regular conditions, we derive the weak consis-...We study tile local linear estimator for tile drift coefficient of stochastic differential equations driven by α-stable Levy motions observed at discrete instants. Under regular conditions, we derive the weak consis- tency and central limit theorem of the estimator. Compared with Nadaraya-Watson estimator, the local linear estimator has a bias reduction whether the kernel function is symmetric or not under different schemes. A silnu- lation study demonstrates that the local linear estimator performs better than Nadaraya-Watson estimator, especially on the boundary.展开更多
Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random samp...Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampl展开更多
In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness c...In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.展开更多
文摘A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of leastsquares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the onestep local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.
基金supported by National Natural Science Foundation of China (Grant Nos.10871177,11071213)Research Fund for the Doctor Program of Higher Education of China (Grant No.20090101110020)
文摘In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.10001004 and 39930160)by the US NSF(Grant No.DMS-9971301).
文摘Letf(x) be the density of a design variableX andm(x) = E[Y∣X = x] the regression function. Thenm(x) = G(x)/f(x), whereG(x) = rn(x)f(x). The Dirac δ-function is used to define a generalized empirical functionG n(x) forG(x) whose expectation equalsG(x). This generalized empirical function exists only in the space of Schwartz distributions, so we introduce a local polynomial of orderp approximation toG n(.) which provides estimators of the functionG(x) and its derivatives. The densityf(x) can be estimated in a similar manner. The resulting local generalized empirical estimator (LGE ) ofm(x) is exactly the Nadaraya-Watson estimator at interior points whenp = 1, but on the boundary the estimator automatically corrects the boundary effect. Asymptotic normality of the estimator is established. Asymptotic expressions for the mean squared errors are obtained and used in bandwidth selection. Boundary behavior of the estimators is investigated in details. We use Monte Carlo simulations to show that the proposed estimator withp = 1 compares favorably with the Nadaraya-Watson and the popular local linear regression smoother.
基金supported by the National Natural Science Foundation of China (Grant No. 10471006)
文摘This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.
基金supported by National Natural Science Foundation of China(Grant Nos.11171303 and 11071213)the Specialized Research Fund for the Doctor Program of Higher Education(Grant No.20090101110020)
文摘We study tile local linear estimator for tile drift coefficient of stochastic differential equations driven by α-stable Levy motions observed at discrete instants. Under regular conditions, we derive the weak consis- tency and central limit theorem of the estimator. Compared with Nadaraya-Watson estimator, the local linear estimator has a bias reduction whether the kernel function is symmetric or not under different schemes. A silnu- lation study demonstrates that the local linear estimator performs better than Nadaraya-Watson estimator, especially on the boundary.
基金the Ministry of Agriculture and Forestry key project“Puuta liikkeelle ja uusia tuotteita metsästä”(“Wood on the move and new products from forest”)Academy of Finland(project numbers 295100 , 306875).
文摘Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampl
文摘In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.