期刊文献+

ρ混合过程下变窗宽局部M-估计的强相合性

Strong Consistency of Local M-estimator with Variable Bandwidth underρMixing Processes
下载PDF
导出
摘要 考虑到在实际应用中,运用变窗宽局部M-估计进行非参数估计时,所收集到的数据有时并非独立样本,而可能是一些混合样本.因此,本文就观测数据为ρ混合过程的条件下,讨论了变窗宽局部M-估计的强相合性,并给出两个具有较弱假设条件的定理. When we are using the local M-estimator with variable bandwidth to estimate, the collected data are not independent samples sometimes, but may be some mixing samples. Therefore, this paper discusses the strong consistency of M-estimator with variable bandwidth when the observational data are ρ-mixing processes, and gives two theorems with some weaker assumptions.
出处 《应用概率统计》 CSCD 北大核心 2011年第5期533-542,共10页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金项目(11061007) 广西自然科学基金项目(2011GXNSFA018133) 广西教育厅科研立项项目(201106LX622)资助
关键词 ρ混合过程 变窗宽 局部M-估计 强相合性 ρ mixing processes, variable bandwidth, local M-estimator, strong consistency
  • 相关文献

参考文献9

  • 1Fan, J.Q. and Gijbels, I., Local Polynomial Modelling and Its Applications, Chapman and Hall, 1996. 被引量:1
  • 2Cai, Z.W, and Ould-Said, E., Local M-estimator for nonparametric time series, Sta. Probab. Left., 65(2003), 433-449. 被引量:1
  • 3Wand, M.P. and Jones, M.C., Kernel Smoothing, Chapman and Hall, 1995,. 被引量:1
  • 4Fan, J.Q., Hu, T.C. and Truong, Y.K., Robust non-parametric function estimation, Seand. J. Statist., 21(1994), 433-446. 被引量:1
  • 5Tsybakov, A.B., Robust reconstruction of functions by the local-approximation method, Problems of Information Transmission, 22(1986), 133-146. 被引量:1
  • 6Welsh, A.H., Robust estimation of smooth regression and spread functions and their derivatives, Statistica Sinica, 6(1996), 347-366. 被引量:1
  • 7杨善朝.混合序列矩不等式和非参数估计[J].数学学报(中文版),1997,40(2):271-279. 被引量:40
  • 8Fan, J.Q. and Gijbels, I., Variable bandwidth and local linear regression smoothers, Ann. Statist., 20(1992), 2008-2036. 被引量:1
  • 9Jiang, J.C. and Mack, Y.P., Robust local polynomial regression for dependent data, Statistica Sinica, 11(2001), 705-722. 被引量:1

二级参考文献5

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部