A low power linear stepping digital programming gain amplifier (PGA) is designed for CMOS image sensors. The PGA consists of three stages with gain range from one to nine, The gain is divided into four regions and e...A low power linear stepping digital programming gain amplifier (PGA) is designed for CMOS image sensors. The PGA consists of three stages with gain range from one to nine, The gain is divided into four regions and each range has 128 linear steps. Power consumption of the PGA is saved by good tradeoff between variation of amplifier feedback coefficient, pipeline stages and gain regions. With thermometer-binary mixed coding and linear pipeline gain stepping, the load capacitance keeps constant when the gain of one stage is changed. The PGA is designed in the SMIC 0.18 μm process. Simulation results show that the power consumption is 3.2 mW with 10 bit resolution and 10 MSPS sampling rate. The PGA has been embedded in a 0.3 megapixel CMOS image sensors and fabricated successfully.展开更多
基金supported by the National Natural Science Foundation of China (No. 60576025)the Tianjin Innovation Special Funds forScience and Technology, China (No. 05FZZDGX00200).
文摘A low power linear stepping digital programming gain amplifier (PGA) is designed for CMOS image sensors. The PGA consists of three stages with gain range from one to nine, The gain is divided into four regions and each range has 128 linear steps. Power consumption of the PGA is saved by good tradeoff between variation of amplifier feedback coefficient, pipeline stages and gain regions. With thermometer-binary mixed coding and linear pipeline gain stepping, the load capacitance keeps constant when the gain of one stage is changed. The PGA is designed in the SMIC 0.18 μm process. Simulation results show that the power consumption is 3.2 mW with 10 bit resolution and 10 MSPS sampling rate. The PGA has been embedded in a 0.3 megapixel CMOS image sensors and fabricated successfully.