It is shown that every almost *-homomorphism h : A→B of a unital JC*-algebra A to a unital JC*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x∈A, and that every almost linear mapping h...It is shown that every almost *-homomorphism h : A→B of a unital JC*-algebra A to a unital JC*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x∈A, and that every almost linear mapping h : A→B is a *-homomorphism when h(2^nu o y) - h(2^nu) o h(y), h(3^nu o y) - h(3^nu) o h(y) or h(q^nu o y) = h(q^nu) o h(y) for all unitaries u ∈A, all y ∈A, and n = 0, 1,.... Here the numbers 2, 3, q depend on the functional equations given in the almost linear mappings. We prove that every almost *-homomorphism h : A→B of a unital Lie C*-algebra A to a unital Lie C*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x ∈A.展开更多
In this paper, the convergency of spline interpolation operators is obtained, these spline operators are determined by linear differential operators and con straint functionals. The errors of the interpolating spline ...In this paper, the convergency of spline interpolation operators is obtained, these spline operators are determined by linear differential operators and con straint functionals. The errors of the interpolating spline with EHB fanctionals are estimated. The best approximation of linear functionals on W2m spaces are investigated, which let to a useful computational method for the approximation so- lution of higher order linear differential equations with multipoint boundary value conditions.展开更多
Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=...Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=L(t,x,)+(t ,x,) also possesses similar exponential estimate. For α=0, a similar result is given.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
基金Grant No.R05-2003-000-10006-0 from the Basic Research Program of the Korea Science & Engineering Foundation.NNSF of China and NSF of Shanxi Province
文摘It is shown that every almost *-homomorphism h : A→B of a unital JC*-algebra A to a unital JC*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x∈A, and that every almost linear mapping h : A→B is a *-homomorphism when h(2^nu o y) - h(2^nu) o h(y), h(3^nu o y) - h(3^nu) o h(y) or h(q^nu o y) = h(q^nu) o h(y) for all unitaries u ∈A, all y ∈A, and n = 0, 1,.... Here the numbers 2, 3, q depend on the functional equations given in the almost linear mappings. We prove that every almost *-homomorphism h : A→B of a unital Lie C*-algebra A to a unital Lie C*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x ∈A.
文摘In this paper, the convergency of spline interpolation operators is obtained, these spline operators are determined by linear differential operators and con straint functionals. The errors of the interpolating spline with EHB fanctionals are estimated. The best approximation of linear functionals on W2m spaces are investigated, which let to a useful computational method for the approximation so- lution of higher order linear differential equations with multipoint boundary value conditions.
基金Research supported by China National Science Foundation
文摘Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=L(t,x,)+(t ,x,) also possesses similar exponential estimate. For α=0, a similar result is given.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.