当前全球导航卫星系统与激光雷达的数据融合被广泛应用于无人驾驶车辆的定位系统中,但在室内环境下由于卫星信号的丢失导致定位精度低甚至无法定位。为此提出一种基于超宽带(Ultra-Wideband,UWB)与激光雷达(Light Detection and Ranging...当前全球导航卫星系统与激光雷达的数据融合被广泛应用于无人驾驶车辆的定位系统中,但在室内环境下由于卫星信号的丢失导致定位精度低甚至无法定位。为此提出一种基于超宽带(Ultra-Wideband,UWB)与激光雷达(Light Detection and Ranging,LiDAR)的融合定位算法。该算法以粒子滤波为基础,对两个传感器的定位数据进行互补融合解算。利用UWB实时定位数据通过提供起始粒子范围的方式来提高LiDAR的定位速率。通过求解LiDAR定位信息与粒子之间的几何距离来更新粒子的权重,从而弥补UWB的非视距误差。搭建一个室内测试场景,并将融合定位算法在智能小车平台上进行验证。实验结果表明,该方法优于UWB或LiDAR单一传感器的定位方案,而且在UWB视距受阻或LiDAR匹配失效的情况下,车辆仍能够获得良好的定位精度和定位实时性。展开更多
随着风电机组基础结构的不断增大,风电机组的控制方法面临新的机遇和挑战,而遥感测量技术的发展给传统风电机组控制策略提供一个新的研究领域。该文提出了基于激光雷达(light detection and ranging,LIDAR)辅助风电机组模型预测控制方...随着风电机组基础结构的不断增大,风电机组的控制方法面临新的机遇和挑战,而遥感测量技术的发展给传统风电机组控制策略提供一个新的研究领域。该文提出了基于激光雷达(light detection and ranging,LIDAR)辅助风电机组模型预测控制方法来实现控制系统对风速扰动的前馈补偿控制。首先根据叶素动量理论分析风电机组的载荷情况和LIDAR预测风轮迎风面的有效风速,利用扩展卡尔曼滤波重建噪声状态的非线性风电机组模型的未知状态,对预测时域状态值的进行预测实时处理,以求解最小目标函数获取系统当前时刻的最优化控制,使得系统参考轨迹和未来输出值之间差值实现最小化。最后,通过进行风电机组传统控制方法与LIDAR辅助线性模型预测控制、非线性模型预测控制的对比实验,证明LIDAR与模型预测控制相结合的控制方式能在一定程度上提高大型风电机组的风能利用系数,缓解风电机组的疲劳载荷。展开更多
负障碍感知是非结构化环境下的难点问题,本文针对该问题提出一种新的基于双多线激光雷达(Light detection and ranging,Li DAR)的感知方法.采用分布嵌入式架构对双激光雷达数据进行同步采集与实时处理,将雷达点云映射到多尺度栅格,统计...负障碍感知是非结构化环境下的难点问题,本文针对该问题提出一种新的基于双多线激光雷达(Light detection and ranging,Li DAR)的感知方法.采用分布嵌入式架构对双激光雷达数据进行同步采集与实时处理,将雷达点云映射到多尺度栅格,统计栅格的点云密度与相对高度等特征并标记,从点云数据提取负障碍几何特征,通过将栅格的统计特征与负障碍的几何特征做多特征关联找到关键特征点对,将特征点对聚类并过滤,识别出负障碍.方法不受地面平整度影响,已成功应用在无人驾驶车上.使用表明该方法具有较高的实时性和可靠性,在非结构化环境下具有良好的感知效果.展开更多
文章针对基于坡度滤波算法在地形复杂地区中难以合理设置滤波阈值的问题,提出了一种基于多尺度网格的点云自适应坡度滤波的算法。首先在构建的多尺度的虚拟网格内选取最优点作为初始地面种子点,计算网格的点云空间占比并划分网格语义属...文章针对基于坡度滤波算法在地形复杂地区中难以合理设置滤波阈值的问题,提出了一种基于多尺度网格的点云自适应坡度滤波的算法。首先在构建的多尺度的虚拟网格内选取最优点作为初始地面种子点,计算网格的点云空间占比并划分网格语义属性,然后利用地形计算因子求得每个网格的坡度分类阈值,再按网格尺度由大到小的方式对整体点云进行坡度滤波,得出真实的地面点云数据。文中采用了多种地形的光探测和测距(Light Detection and Ranging,LiDAR)(简称“激光雷达”)数据来验证该算法,结果表明,该算法能够有效去除地面上的植被、建筑物等地物点,保留真实的地面点云数据。该算法重点解决了在伴随地形变化时坡度滤波阈值的计算和自适应设置问题,以及在地形变化剧烈的边缘地带过度滤波的问题。展开更多
文摘当前全球导航卫星系统与激光雷达的数据融合被广泛应用于无人驾驶车辆的定位系统中,但在室内环境下由于卫星信号的丢失导致定位精度低甚至无法定位。为此提出一种基于超宽带(Ultra-Wideband,UWB)与激光雷达(Light Detection and Ranging,LiDAR)的融合定位算法。该算法以粒子滤波为基础,对两个传感器的定位数据进行互补融合解算。利用UWB实时定位数据通过提供起始粒子范围的方式来提高LiDAR的定位速率。通过求解LiDAR定位信息与粒子之间的几何距离来更新粒子的权重,从而弥补UWB的非视距误差。搭建一个室内测试场景,并将融合定位算法在智能小车平台上进行验证。实验结果表明,该方法优于UWB或LiDAR单一传感器的定位方案,而且在UWB视距受阻或LiDAR匹配失效的情况下,车辆仍能够获得良好的定位精度和定位实时性。
文摘随着风电机组基础结构的不断增大,风电机组的控制方法面临新的机遇和挑战,而遥感测量技术的发展给传统风电机组控制策略提供一个新的研究领域。该文提出了基于激光雷达(light detection and ranging,LIDAR)辅助风电机组模型预测控制方法来实现控制系统对风速扰动的前馈补偿控制。首先根据叶素动量理论分析风电机组的载荷情况和LIDAR预测风轮迎风面的有效风速,利用扩展卡尔曼滤波重建噪声状态的非线性风电机组模型的未知状态,对预测时域状态值的进行预测实时处理,以求解最小目标函数获取系统当前时刻的最优化控制,使得系统参考轨迹和未来输出值之间差值实现最小化。最后,通过进行风电机组传统控制方法与LIDAR辅助线性模型预测控制、非线性模型预测控制的对比实验,证明LIDAR与模型预测控制相结合的控制方式能在一定程度上提高大型风电机组的风能利用系数,缓解风电机组的疲劳载荷。
文摘负障碍感知是非结构化环境下的难点问题,本文针对该问题提出一种新的基于双多线激光雷达(Light detection and ranging,Li DAR)的感知方法.采用分布嵌入式架构对双激光雷达数据进行同步采集与实时处理,将雷达点云映射到多尺度栅格,统计栅格的点云密度与相对高度等特征并标记,从点云数据提取负障碍几何特征,通过将栅格的统计特征与负障碍的几何特征做多特征关联找到关键特征点对,将特征点对聚类并过滤,识别出负障碍.方法不受地面平整度影响,已成功应用在无人驾驶车上.使用表明该方法具有较高的实时性和可靠性,在非结构化环境下具有良好的感知效果.
文摘文章针对基于坡度滤波算法在地形复杂地区中难以合理设置滤波阈值的问题,提出了一种基于多尺度网格的点云自适应坡度滤波的算法。首先在构建的多尺度的虚拟网格内选取最优点作为初始地面种子点,计算网格的点云空间占比并划分网格语义属性,然后利用地形计算因子求得每个网格的坡度分类阈值,再按网格尺度由大到小的方式对整体点云进行坡度滤波,得出真实的地面点云数据。文中采用了多种地形的光探测和测距(Light Detection and Ranging,LiDAR)(简称“激光雷达”)数据来验证该算法,结果表明,该算法能够有效去除地面上的植被、建筑物等地物点,保留真实的地面点云数据。该算法重点解决了在伴随地形变化时坡度滤波阈值的计算和自适应设置问题,以及在地形变化剧烈的边缘地带过度滤波的问题。