期刊文献+

大型风电机组激光雷达辅助模型预测控制方法 被引量:13

Approach to Model Predictive Control of Large Wind Turbine Using Light Detection and Ranging Measurements
下载PDF
导出
摘要 随着风电机组基础结构的不断增大,风电机组的控制方法面临新的机遇和挑战,而遥感测量技术的发展给传统风电机组控制策略提供一个新的研究领域。该文提出了基于激光雷达(light detection and ranging,LIDAR)辅助风电机组模型预测控制方法来实现控制系统对风速扰动的前馈补偿控制。首先根据叶素动量理论分析风电机组的载荷情况和LIDAR预测风轮迎风面的有效风速,利用扩展卡尔曼滤波重建噪声状态的非线性风电机组模型的未知状态,对预测时域状态值的进行预测实时处理,以求解最小目标函数获取系统当前时刻的最优化控制,使得系统参考轨迹和未来输出值之间差值实现最小化。最后,通过进行风电机组传统控制方法与LIDAR辅助线性模型预测控制、非线性模型预测控制的对比实验,证明LIDAR与模型预测控制相结合的控制方式能在一定程度上提高大型风电机组的风能利用系数,缓解风电机组的疲劳载荷。 With increasing size of large wind turbine, control methods faces new opportunities and challenges, the development of remote sensing technology provides a new research field of the traditional control strategy. This paper focused on the design of light detection and ranging(LIDAR) assisted model predictive control(MPC) of wind turbine, it achieved wind speed disturbance feedforward compensation control. First, the blade element momentum(BEM) theory have analyzed the wind turbine loads and LIDAR forecast wind speed of the rotor windward side, used of extended Kalman filter reconstruct unknown nonlinear wind turbine model for prediction horizon state values real-time processing, it solved the minimum objective function to get the current system time of the optimal control strategy, to minimize the reference trajectory and the output value. Finally, the experiment of traditional control method comparative with LIDAR assisted LMPC and NMPC, the results show that combination of LIDAR and MPC can improve power coefficient of large wind turbines and mitigate the fatigue load of wind turbine.
出处 《中国电机工程学报》 EI CSCD 北大核心 2016年第18期5062-5069,5131,共8页 Proceedings of the CSEE
基金 科技部国际合作项目(2011DFA62890)~~
关键词 风电机组 模型预测控制 二次规划 扩展卡尔曼滤波 激光雷达 等效疲劳载荷 wind turbine model predictive control(MPC) quadratic programming extended Kalman filter light detection and ranging(LIDAR) equivalent damage loads(DELs)
  • 相关文献

参考文献20

  • 1耿华,杨耕.变速变桨距风电系统的功率水平控制[J].中国电机工程学报,2008,28(25):130-137. 被引量:66
  • 2窦真兰,王晗,张秋琼,凌志斌,蔡旭.虚拟风场和风力机模拟系统的实验研究[J].中国电机工程学报,2011,31(20):127-135. 被引量:17
  • 3Hiskens I.Dynamics of type-3 wind turbine generator models[J].IEEE Transactions on Power Systems,2012,27(1):465-474. 被引量:1
  • 4李和明,张祥宇,王毅,朱晓荣.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报,2012,32(7):32-39. 被引量:170
  • 5Yuan Xibo,Li Yongdong.Control of variable pitch and variable speed direct-drive wind turbines in weak grid systems with active power balance[J].IET Renewable Power Generation,2014,8(2):119-131. 被引量:1
  • 6Namik H,Stol K.Individual blade pitch control of a spar-buoy floating wind turbine[J].IEEE Transactions Control Systems Technology,2014,22(1):214-223. 被引量:1
  • 7Takahashi R,Kinoshita H,Murata T,et al.Output power smoothing and hydrogen production by using variable speed wind generators[J].IEEE Transactions on Industrial Electronics,2010,57(2):485-493. 被引量:1
  • 8Camblong H,Nourdine S,Vechiu I.Comparison of an island wind turbine collective and individual pitch LQG controllers designed to alleviate fatigue loads[J].IET Renewable Power Generation,2012,6(4):267-275. 被引量:1
  • 9Kanellos F D,Hatziargyriou N D.Optimal control of variable speed wind turbines in islanded mode of operation[J].IEEE Transactions on Energy Conversion,2010,25(4):1142-1151. 被引量:1
  • 10Sorensen K L,Galeazzi R,Odgaard P F,et al.Adaptive passivity based individual pitch control for wind turbines in the full load region[C] //Proceedings of American Control Conference.Portland,OR:IEEE,2014:554-559. 被引量:1

二级参考文献57

共引文献250

同被引文献112

引证文献13

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部