The key point in the numerical simulation of breach growth and bed deformation process in dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sedimen...The key point in the numerical simulation of breach growth and bed deformation process in dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sediment was developed to simulate the bed deformation process in the dike burst. The first-order scheme was used in computation. Several simulated results were worked out to demonstrate the applicability of the numerical model.展开更多
Levees are essential structures in flood defense systems,and their failures can lead to devastating consequences on the surrounding territories.One of the failure mechanisms mostly controlled by the foundation soil st...Levees are essential structures in flood defense systems,and their failures can lead to devastating consequences on the surrounding territories.One of the failure mechanisms mostly controlled by the foundation soil stratigraphy is the instability of the land side slope,triggered by the development of high uplift pressures in the foundation.This complex phenomenon has been investigated experimentally with centrifuge tests or large-scale tests and numerically with the limit equilibrium method(LEM)and the finite element method(FEM).In this work,we applied a multiphase formulation of the material point method(MPM)to analyze the development of toe uplift instability mechanism,from the onset of failure to large displacements.The numerical model is inspired by an experiment carried out in a geotechnical centrifuge test by Allersma and Rohe(2003).The comparison with the experiment allows for understanding critical pore pressure triggering large displacements in the foundation soils.Moreover,we numerically evaluated the impact of different values of foundation soils’hydraulic conductivity on the failure mechanism.The results show that hydraulic conductivity mainly influences the time of failure onset and the extension of shear localization at depth.Finally,the advantages of using large displacement approaches in the safety assessment of earth structures are discussed.Unlike FEM,there are no issues with element distortions generating difficulties with numerical convergence,allowing for full postfailure reproduction.This capability permits precise quantification of earth structure damages and post-failure displacements.The ensuing reinforcement systems’design is no longer over-conservative,with a significant reduction in associated costs.展开更多
The huge winter storm of December 23-29, 2015 delivered heavy rainfall in a broad swath across the USA, deluging East-Central Missouri. Record high river levels were set at many sites, but damages were most pronounced...The huge winter storm of December 23-29, 2015 delivered heavy rainfall in a broad swath across the USA, deluging East-Central Missouri. Record high river levels were set at many sites, but damages were most pronounced in developed floodplain areas, particularly where high levees were built or river channels greatly narrowed. An average of 20 cm of rain that mostly fell in three days impacted the entire 10 300 km2 Meramec Basin. Compared to the prior record flood of 1982, the highest relative stage(+1.3 m) on Meramec River occurred at Valley Park proximal to(1) a new levee,(2) a landfill in the floodway,(3) large floodplain construction fills, and(4) tributary creek basins impacted by suburban sprawl. Even though only a small fraction of the 1.8 million km2 Mississippi River watershed above St. Louis received extraordinary rainfall during this event, the huge channelized river near and below St. Louis rapidly rose to set the 3rd-highest to the highest stages ever, exhibiting the flashy response typical of a much smaller river.展开更多
Basaltic eruptions have been observed to produce structurally complex, compound 'a'ā lava flow fields but their morphometry has only rarely been systematically documented. We document the morphology and struc...Basaltic eruptions have been observed to produce structurally complex, compound 'a'ā lava flow fields but their morphometry has only rarely been systematically documented. We document the morphology and structures that developed during the emplacement of the 1982 basaltic lava flow field at Mount Cameroon (MC) volcano over a period of one month. Topographic cross-sections (13 in total) were made from the main vent (~2700 m above sea level (a.s.l)) down to a distance of 5.5 km on the cooled lava surface. Details obtained from these cross-sections include: channel width and depth, levee slope, lava surface morphology and structures. These details enabled us to describe the physical characteristics of the 1982 lava flow field. The inclined (12° - 19°) underlying slopes on which this flow field was emplaced resulted in a characteristic channelized basaltic 'a'ā flow field morphology. This includes a proximal zone characterised by reduced flow width and depth with no subsidiary channels. Slab-crusted lava dominates the proximal channel distinctively bent into convex upward shapes. 7 secondary vents were observed for the first time ~2.5 km from the main vent, with heights of 3 - 15 m. This is a very significant observation since it points to the fact that the flow field emplacement may have been a product of 2 eruption sites as observed at other historical MC lava flow fields. This supposition was ruled out by further evidence obtained from other surface features within the flow field. The presence of these secondary vents still has an important bearing in lava flow hazard assessment. Field observations also revealed the presence of tumulus. This is a novel feature for MC lava flow fields. It displayed a close similarity to those observed at other basaltic volcanoes occurring in association with clinker 'a'ā lava, lava tubes, squeeze-ups and pressure ridges. Channels are well-defined, bounded by levees. Accretional and overflow levees dominate in this flow field. This lava flow-field attained a final length of 7.5展开更多
文摘The key point in the numerical simulation of breach growth and bed deformation process in dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sediment was developed to simulate the bed deformation process in the dike burst. The first-order scheme was used in computation. Several simulated results were worked out to demonstrate the applicability of the numerical model.
基金Financial supports from University of Padua(Grant No.BIRD181859)Italian Ministry of Education,University and Research(MIUR),Redreef-PRIN 2017 Call(Grant No.2017YPMBWJ)are gratefully acknowledged.
文摘Levees are essential structures in flood defense systems,and their failures can lead to devastating consequences on the surrounding territories.One of the failure mechanisms mostly controlled by the foundation soil stratigraphy is the instability of the land side slope,triggered by the development of high uplift pressures in the foundation.This complex phenomenon has been investigated experimentally with centrifuge tests or large-scale tests and numerically with the limit equilibrium method(LEM)and the finite element method(FEM).In this work,we applied a multiphase formulation of the material point method(MPM)to analyze the development of toe uplift instability mechanism,from the onset of failure to large displacements.The numerical model is inspired by an experiment carried out in a geotechnical centrifuge test by Allersma and Rohe(2003).The comparison with the experiment allows for understanding critical pore pressure triggering large displacements in the foundation soils.Moreover,we numerically evaluated the impact of different values of foundation soils’hydraulic conductivity on the failure mechanism.The results show that hydraulic conductivity mainly influences the time of failure onset and the extension of shear localization at depth.Finally,the advantages of using large displacement approaches in the safety assessment of earth structures are discussed.Unlike FEM,there are no issues with element distortions generating difficulties with numerical convergence,allowing for full postfailure reproduction.This capability permits precise quantification of earth structure damages and post-failure displacements.The ensuing reinforcement systems’design is no longer over-conservative,with a significant reduction in associated costs.
文摘The huge winter storm of December 23-29, 2015 delivered heavy rainfall in a broad swath across the USA, deluging East-Central Missouri. Record high river levels were set at many sites, but damages were most pronounced in developed floodplain areas, particularly where high levees were built or river channels greatly narrowed. An average of 20 cm of rain that mostly fell in three days impacted the entire 10 300 km2 Meramec Basin. Compared to the prior record flood of 1982, the highest relative stage(+1.3 m) on Meramec River occurred at Valley Park proximal to(1) a new levee,(2) a landfill in the floodway,(3) large floodplain construction fills, and(4) tributary creek basins impacted by suburban sprawl. Even though only a small fraction of the 1.8 million km2 Mississippi River watershed above St. Louis received extraordinary rainfall during this event, the huge channelized river near and below St. Louis rapidly rose to set the 3rd-highest to the highest stages ever, exhibiting the flashy response typical of a much smaller river.
文摘Basaltic eruptions have been observed to produce structurally complex, compound 'a'ā lava flow fields but their morphometry has only rarely been systematically documented. We document the morphology and structures that developed during the emplacement of the 1982 basaltic lava flow field at Mount Cameroon (MC) volcano over a period of one month. Topographic cross-sections (13 in total) were made from the main vent (~2700 m above sea level (a.s.l)) down to a distance of 5.5 km on the cooled lava surface. Details obtained from these cross-sections include: channel width and depth, levee slope, lava surface morphology and structures. These details enabled us to describe the physical characteristics of the 1982 lava flow field. The inclined (12° - 19°) underlying slopes on which this flow field was emplaced resulted in a characteristic channelized basaltic 'a'ā flow field morphology. This includes a proximal zone characterised by reduced flow width and depth with no subsidiary channels. Slab-crusted lava dominates the proximal channel distinctively bent into convex upward shapes. 7 secondary vents were observed for the first time ~2.5 km from the main vent, with heights of 3 - 15 m. This is a very significant observation since it points to the fact that the flow field emplacement may have been a product of 2 eruption sites as observed at other historical MC lava flow fields. This supposition was ruled out by further evidence obtained from other surface features within the flow field. The presence of these secondary vents still has an important bearing in lava flow hazard assessment. Field observations also revealed the presence of tumulus. This is a novel feature for MC lava flow fields. It displayed a close similarity to those observed at other basaltic volcanoes occurring in association with clinker 'a'ā lava, lava tubes, squeeze-ups and pressure ridges. Channels are well-defined, bounded by levees. Accretional and overflow levees dominate in this flow field. This lava flow-field attained a final length of 7.5