期刊文献+
共找到2,442篇文章
< 1 2 123 >
每页显示 20 50 100
连续小波变换高光谱数据的土壤有机质含量反演模型构建 被引量:45
1
作者 于雷 洪永胜 +1 位作者 周勇 朱强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第5期1428-1433,共6页
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方... 土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用"重铬酸钾-外加热法"测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R^2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R^2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CRCWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R^2,RCWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R^2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R^2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CRCWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。 展开更多
关键词 土壤有机质 高光谱 连续小波变换 偏最小二乘回归 BP神经网络 支持向量机回归
下载PDF
基于改进型鲸鱼优化算法和最小二乘支持向量机的炼钢终点预测模型研究 被引量:31
2
作者 郑威迪 李志刚 +1 位作者 贾涵中 高闯 《电子学报》 EI CAS CSCD 北大核心 2019年第3期700-706,共7页
终点碳含量是决定钢质量的关键因素,是转炉炼钢过程中需要控制的核心变量之一.本文建立了一种基于莱维飞行的鲸鱼优化算法(Levy Whale Optimization Algorithm,LWOA)和最小二乘向量机(Least Squares Support Vector Machine,LSSVM)的钢... 终点碳含量是决定钢质量的关键因素,是转炉炼钢过程中需要控制的核心变量之一.本文建立了一种基于莱维飞行的鲸鱼优化算法(Levy Whale Optimization Algorithm,LWOA)和最小二乘向量机(Least Squares Support Vector Machine,LSSVM)的钢水终点碳含量综合预测模型.通过莱维飞行代替了传统鲸鱼优化算法(Whale Optimization Algorithm,WOA)参数的随机选择,优化了鲸鱼算法中跳出局部最优的能力;借助改变鲸鱼算法的系数向量收敛方式明显提高了鲸鱼优化算法的泛化能力、预测精度和收敛速度.数据仿真结果表明,所提出的LWOA-LSSVM预测模型,不仅能够克服局部寻优获取全局最优解,而且具有快速的收敛速度和更高的预测精度,得出预测结果的均方根误差、平均绝对误差和平均绝对百分比误差与遗传算法BP神经网络、遗传算法最小二乘支持向量机和传统鲸鱼算法最小二乘支持向量机相比均有着明显提高.同时,通过调整目标命中率和训练输入样本量验证了预测模型具有更好的鲁棒性. 展开更多
关键词 炼钢 碳含量 鲸鱼优化算法 最小二乘法 支持向量机 莱维飞行
下载PDF
应用近红外漫反射光谱对猪肉肉糜进行定性定量检测研究 被引量:29
3
作者 成芳 樊玉霞 廖宜涛 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第2期354-359,共6页
利用傅里叶变换近红外漫反射光谱结合不同数学建模算法对不同部位取样的猪肉肉糜进行定性判别建模,并建立猪肉肉糜品质指标脂肪、蛋白质和水分含量的定量检测模型。结果表明:不同部位取样猪肉肉糜判别分析PLSDA模型性能良好,最优模型校... 利用傅里叶变换近红外漫反射光谱结合不同数学建模算法对不同部位取样的猪肉肉糜进行定性判别建模,并建立猪肉肉糜品质指标脂肪、蛋白质和水分含量的定量检测模型。结果表明:不同部位取样猪肉肉糜判别分析PLSDA模型性能良好,最优模型校正集判别正确率为100%,预测集判别正确率为96%;比较两种方法结合,不同光谱预处理建立各品质指标的定量模型,LS-SVM模型性能优于PLSR模型,脂肪和水分含量最佳预测模型校正及预测相关系数r均高于0.9,蛋白质含量最优模型校正及预测相关系数r,RMSEC,RMSEP和RMSECV分别为0.722,0.593,1.595,1.550和1.888,模型精度需进一步提高。研究表明利用傅里叶变换近红外漫反射光谱快速判别不同部位猪肉肉糜的方法是可行的,脂肪和水分含量定量分析模型从预测精度、稳定性及适应性考虑均具一定的通用性,具有良好的市场应用前景。 展开更多
关键词 猪肉肉糜 近红外光谱 偏最小二乘 支持向量机 品质指标
下载PDF
基于光谱技术的大豆豆荚炭疽病早期鉴别方法 被引量:26
4
作者 冯雷 陈双双 +3 位作者 冯斌 刘飞 何勇 楼兵干 《农业工程学报》 EI CAS CSCD 北大核心 2012年第1期139-144,共6页
为更好地指导农户进行植物病害防治,提高大豆豆荚的商品性,减少损失,需要运用快速有效的方法来进行大豆豆荚炭疽病的早期检测。该文应用可见-近红外光谱技术结合连续投影算法(SPA)和最小二乘支持向量机(LS-SVM),实现了大豆豆荚炭疽病的... 为更好地指导农户进行植物病害防治,提高大豆豆荚的商品性,减少损失,需要运用快速有效的方法来进行大豆豆荚炭疽病的早期检测。该文应用可见-近红外光谱技术结合连续投影算法(SPA)和最小二乘支持向量机(LS-SVM),实现了大豆豆荚炭疽病的早期快速无损检测。对194个大豆豆荚样本进行光谱扫描,通过不同预处理方法比较,建立了大豆豆荚炭疽病早期无损鉴别的最优偏最小二乘法(PLS)模型。同时应用主成分分析(PCA)和连续投影算法(SPA)分别了提取最佳主成分和有效波长,并将其作为LS-SVM的输入变量,建立了PCA-LS-SVM和SPA-LS-SVM模型,以样本鉴别的准确率作为模型评价指标。试验结果显示PCA-LS-SVM和SPA-LS-SVM模型都获得了比较满意的准确率,且SPA-LS-SVM模型的准确率最高为95.45%。研究表明,SPA能够有效地进行波长选择,进而使LS-SVM模型获得较高的鉴别率,说明应用可见-近红外光谱技术鉴别大豆豆荚炭疽病是可行的。这为进一步应用光谱技术进行大豆生长对逆境胁迫的反应提供了新的方法,为实现大豆病害的田间实时在线检测提供参考。 展开更多
关键词 近红外光谱 主成分分析 最小二乘法 支持向量机 判断分析 炭疽病
下载PDF
应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算 被引量:25
5
作者 曹霖 彭道黎 +1 位作者 王雪军 陈新云 《东北林业大学学报》 CAS CSCD 北大核心 2018年第9期54-58,共5页
以Sentinel-2A为遥感数据源,以第九次森林资源清查数据为样地实测数据,对吉林省中东部的森林蓄积量进行反演。通过对遥感影像进行处理,获取影像的波段光谱值、植被指数,降维处理纹理特征以及地形因子;采用多元线性回归、偏最小二乘法、... 以Sentinel-2A为遥感数据源,以第九次森林资源清查数据为样地实测数据,对吉林省中东部的森林蓄积量进行反演。通过对遥感影像进行处理,获取影像的波段光谱值、植被指数,降维处理纹理特征以及地形因子;采用多元线性回归、偏最小二乘法、随机森林、支持向量机等构建了研究区的森林蓄积量估算模型,对检验样本做出了估测。结果表明:机器学习法在反演结果上均优于传统建模方法,随机森林法结果最优,相对误差为17.88%,方程精度为82.12%。 展开更多
关键词 森林蓄积量 Sentinel-2A 多元线性回归 偏最小二乘法 随机森林 支持向量机
下载PDF
基于高光谱的三江源区土壤有机质含量反演 被引量:23
6
作者 周伟 谢利娟 +3 位作者 杨晗 黄露 李浩然 杨猛 《土壤通报》 CAS CSCD 北大核心 2021年第3期564-574,共11页
土壤有机质(SOM)是指土壤中各种含碳有机化合物的总称,其动态变化不仅影响农业生态系统的稳定,而且与大气圈和生物圈的碳循环密切相关,对土壤有机碳的大规模快速监测和碳储量核算具有重要意义。本研究于2017年、2018年7月在三江源区野... 土壤有机质(SOM)是指土壤中各种含碳有机化合物的总称,其动态变化不仅影响农业生态系统的稳定,而且与大气圈和生物圈的碳循环密切相关,对土壤有机碳的大规模快速监测和碳储量核算具有重要意义。本研究于2017年、2018年7月在三江源区野外采集了145个土壤样品,检测了土壤光谱信息。然后将原始光谱反射率数据及其不同数据变换形式下的光谱分别与土壤有机质(SOM)含量进行相关分析,并选取了特征波段,此外利用偏最小二乘回归(PLSR)、支持向量机(SVM)和随机森林(RF)模型对三江源区SOM含量进行建模估算。结果表明,不同深度土壤有机质含量差异明显,且呈逐层下降趋势。而三种建模方法的检验精度分别为:RF>SVM>PLSR,其中RF和一阶微分(FD)组合模拟最好(建模集和验证集的R^(2)、RMSE分别为0.9678、8.9132和0.7841、20.9787)。对于三江源土壤有机质含量反演,不同模型的最佳数据变换方法不同。本研究成果能为后续的高光谱遥感反演提供理论支撑,从而实现三江源区土壤有机质含量的快速检测和实时动态监测。 展开更多
关键词 高光谱 土壤有机质 随机森林 偏最小二乘法 支持向量机
原文传递
一种改进的最小二乘孪生支持向量机分类算法 被引量:21
7
作者 储茂祥 王安娜 巩荣芬 《电子学报》 EI CAS CSCD 北大核心 2014年第5期998-1003,共6页
提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实... 提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实现结构风险最小化和避免在求解该目标函数时可能对病态矩阵求逆的处理.同时,提出了利用一种指数函数计算训练样本的密度来获得样本权重值的算法.该算法能够有效缩减计算权重的时间,且具有较强的鲁棒性.实验证明本文提出的广泛权重的最小二乘孪生支持向量机能够实现高精度和高效率的分类效果,而且特别适合于含有交叉噪声样本的数据集分类. 展开更多
关键词 模式分类 最小二乘 孪生支持向量机 权重 指数函数
下载PDF
电力系统间谐波检测方法 被引量:20
8
作者 曹健 林涛 +1 位作者 张蔓 刘林 《高电压技术》 EI CAS CSCD 北大核心 2008年第8期1745-1750,共6页
为了能够为间谐波的治理提供良好的依据,改进了支持向量机间谐波检测算法,并用Matlab仿真软件对该方法和基于最小二乘间谐波测量方法进行了对比评估。研究结果表明:在同等条件下基于改进型支持向量机间谐波检测方法计算精度略低,但可以... 为了能够为间谐波的治理提供良好的依据,改进了支持向量机间谐波检测算法,并用Matlab仿真软件对该方法和基于最小二乘间谐波测量方法进行了对比评估。研究结果表明:在同等条件下基于改进型支持向量机间谐波检测方法计算精度略低,但可以在小样本的条件下测量间谐波。而基于最小二乘间谐波检测方法测量精度高、计算量小,但需要较长的时间窗口。 展开更多
关键词 电力系统间谐波 最小二乘法 改进型支持向量机 LABVIEW 检测 曲线拟合
下载PDF
基于偏最小二乘回归和SVM的水质预测 被引量:21
9
作者 张森 石为人 +1 位作者 石欣 郭宝丽 《计算机工程与应用》 CSCD 北大核心 2015年第15期249-254,共6页
针对传统水质预测方法中水质因子的多重相关性造成预测精度低的问题,提出了一种将偏最小二乘法和支持向量机相耦合的水质预测方法。利用偏最小二乘法提取对水质因子影响强的成分,从而克服了信息冗余问题,并降低了支持向量的维数。利用... 针对传统水质预测方法中水质因子的多重相关性造成预测精度低的问题,提出了一种将偏最小二乘法和支持向量机相耦合的水质预测方法。利用偏最小二乘法提取对水质因子影响强的成分,从而克服了信息冗余问题,并降低了支持向量的维数。利用支持向量机建模可以较好地解决高维非线性小样本问题。同时利用改进的PSO算法优化SVM参数,减小参数搜索的盲目性。研究结果表明,本耦合模型的预测精度和运行效率明显优于常用的BP人工神经网络和传统的支持向量机,可以更好地应用于水质预测。 展开更多
关键词 水质预测 偏最小二乘回归 支持向量机 预测模型 粒子群优化算法
下载PDF
基于粒子群LSSVM的网络入侵检测 被引量:19
10
作者 刘智国 张雅明 林立忠 《计算机仿真》 CSCD 北大核心 2010年第11期136-139,共4页
研究保护网络安全问题,计算机网络攻击的多样性及隐蔽性导致网络入侵检测困难。当前流行的人工神经网络检测方法的网络入侵检测率仅70%左右,不能满足网络安全防护需求,为了解决上述问题,提出基于最小二乘支持向量机和粒子群优化算法(PSO... 研究保护网络安全问题,计算机网络攻击的多样性及隐蔽性导致网络入侵检测困难。当前流行的人工神经网络检测方法的网络入侵检测率仅70%左右,不能满足网络安全防护需求,为了解决上述问题,提出基于最小二乘支持向量机和粒子群优化算法(PSO-LSSVM)的网络入侵检测方法,粒子群优化算法用于选择合适的最小二乘支持向量机参数。方法泛化能力强,识别精度高。在网络入侵检测中,通过KDDCup99数据库数据进行仿真,证明方法的优越性。实验结果表明粒子群优化算法与最小二乘支持向量机组合方法的网络入侵检测精度优于LSSVM与SVM。可见,PSO-LSSVM非常适合于网络入侵检测,可为网络保护设计提供参考。 展开更多
关键词 最小二乘 支持向量机 网络入侵 检测
下载PDF
基于激光诱导击穿光谱的矿石中铁含量的高准确度定量分析 被引量:18
11
作者 邱苏玲 李安 +7 位作者 王宪双 孔德男 马骁 何雅格 殷允嵩 柳宇飞 石丽洁 刘瑞斌 《中国激光》 EI CAS CSCD 北大核心 2021年第16期195-204,共10页
基于激光诱导击穿光谱(LIBS)对铁矿石、锰矿石和铬矿石中的Fe元素进行定量分析。由于矿石成分复杂,采取一系列的光谱预处理来降低由激光能量波动及样品不稳定烧蚀所造成的光谱波动。本文将分类和定量分析方法结合,首先通过支持向量机对... 基于激光诱导击穿光谱(LIBS)对铁矿石、锰矿石和铬矿石中的Fe元素进行定量分析。由于矿石成分复杂,采取一系列的光谱预处理来降低由激光能量波动及样品不稳定烧蚀所造成的光谱波动。本文将分类和定量分析方法结合,首先通过支持向量机对光谱进行分类以避免不同类矿石间的基体效应。然后通过相关性变量筛选偏最小二乘回归分析(R-PLS)改进算法进行分析,发现三类矿石的预测集方均根误差分别降至0.975%、0.418%、0.123%,平均相对误差分别降至1.46%、6.72%和1.09%。实验结果表明,矿石分类后再进行相关性变量筛选偏最小二乘回归分析的方法可以有效提升预测准确度,为矿石成分在线检测的应用提供了可靠依据。 展开更多
关键词 光谱学 激光诱导击穿光谱 矿石 定量分析 偏最小二乘回归 主成分分析 支持向量机
原文传递
电站锅炉主要热工过程参数软测量技术研究进展 被引量:16
12
作者 罗嘉 吴乐 《热力发电》 CAS 北大核心 2015年第11期1-9,13,共10页
电站锅炉某些主要热工过程参数难以实现在线实时测量,从而制约了机组的高效、经济运行。为此,本文解析了基于统计分析的主元分析法和偏最小二乘法、基于人工智能的人工神经网络(ANN)法、基于统计学习理论的支持向量机法以及模糊理论法... 电站锅炉某些主要热工过程参数难以实现在线实时测量,从而制约了机组的高效、经济运行。为此,本文解析了基于统计分析的主元分析法和偏最小二乘法、基于人工智能的人工神经网络(ANN)法、基于统计学习理论的支持向量机法以及模糊理论法的建模方法。并以球磨机负荷、煤质、风煤比、烟气含氧量、飞灰含碳量、汽包水位、主蒸汽温度、省煤器积灰、污染物排放量等参数为对象,综述了各种软测量技术的研究现状。结果显示:对于飞灰含碳量等呈非线性特征的变量,基于核主元分析(KPCA)法建立其软测量模型,效果较好;当各变量的线性关联度高时,采用偏最小二乘回归(PLSR)法建立其软测量模型更为有效;对于人工神经网络法,当实际样本空间超出训练样本空间区域时,模型输出误差较大,因此实际工业过程中需定时对基于ANN法建立的模型参数进行校正;对于支持向量机(SVM)法还无成熟的指导方法,基于经验数据则对模型精度的影响较大,最小二乘支持向量机(LS-SVM)法的建模方法与传统SVM法相比,训练时间更短,结果更具确定性,更适合工业在线建模;模糊理论法不需要被测对象的精确数学模型,但模糊系统本身不具有学习功能,如果能够将其与ANN法等人工智能方法相结合,则可提高软测量的性能。因此,软测量技术的引入,使得难以在线测量的热工过程参数监测成为可能。 展开更多
关键词 电站锅炉 热工过程参数 软测量 主元分析法 偏最小二乘法 神经网络法 支持向量机 模糊理论法
下载PDF
基于激光近红外的稻米油掺伪定性-定量分析 被引量:15
13
作者 涂斌 宋志强 +4 位作者 郑晓 曾路路 尹成 何东平 亓培实 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第6期1539-1545,共7页
该文主要研究激光近红外光谱分析技术结合化学计量学方法对稻米油掺伪进行定性-定量分析。分别将大豆油、玉米油、菜籽油、餐饮废弃油掺入稻米油中,按照不同质量比配置189个掺伪油样,利用激光近红外光谱仪采集光谱;对采集的稻米油掺伪... 该文主要研究激光近红外光谱分析技术结合化学计量学方法对稻米油掺伪进行定性-定量分析。分别将大豆油、玉米油、菜籽油、餐饮废弃油掺入稻米油中,按照不同质量比配置189个掺伪油样,利用激光近红外光谱仪采集光谱;对采集的稻米油掺伪图谱数据进行多元散射校正(MSC)、正交信号校正(OSC)、标准正态变量变换和去趋势技术联用算法(SNV_DT)三种不同预处理并与原始数据进行比较。采用连续投影算法(SPA)对经过预处理的光谱数据进行特征波长提取,应用支持向量机分类(SVC)方法建立稻米油掺伪样品的定性分类校正模型,选择网格搜索算法对模型参数组合(C,g)进行寻优,确定最优参数组合。另采用后向间隔偏最小二乘法(BiPLS)和SPA对预处理后的光谱数据进行特征波长提取,分别应用偏最小二乘法(PLS)和支持向量机回归(SVR)建立掺伪油含量的定量校正模型,并选用网格搜索算法对SVR模型参数组合(C,g)进行寻优,建立最优参数模型。研究表明,建立的SVC模型预测集和校正集的准确率分别达到了95%和100%;对比SVR和PLS方法建立的数学模型对稻米油中掺杂油脂的含量的预测,两种方法均能够实现含量预测,SVR模型的预测能力更好,相关系数R高于0.99,均方根误差(MSE)低于5.55×10-4,预测精度高。结果表明,采用激光近红外光谱分析技术可以实现稻米油掺伪的定性-定量分析,同时为其他油脂的掺伪分析提供了方法。 展开更多
关键词 稻米油 近红外光谱技术 定性-定量 特征波长 偏最小二乘法 支持向量机
下载PDF
冬小麦叶片光合特征高光谱遥感估算模型的比较研究 被引量:15
14
作者 张卓 龙慧灵 +1 位作者 王崇倡 杨贵军 《中国农业科学》 CAS CSCD 北大核心 2019年第4期616-628,共13页
【目的】光合作用是农作物产量和品质形成的基础,农作物光合参数的准确定量遥感反演不仅能够了解农作物的生长发育和有机物累积状况,还能为基于遥感的生态系统过程模型提供参考。为快速准确的估算光合特征参量,本研究综合原始光谱、3种... 【目的】光合作用是农作物产量和品质形成的基础,农作物光合参数的准确定量遥感反演不仅能够了解农作物的生长发育和有机物累积状况,还能为基于遥感的生态系统过程模型提供参考。为快速准确的估算光合特征参量,本研究综合原始光谱、3种传统光谱变换技术和4种模拟方法构建冬小麦3种光合参数的高光谱反演模型,探讨高光谱反演冬小麦光合参数的可行性,对比不同类别光谱和模拟方法的适用性。【方法】本研究基于氮肥施用条件冬小麦气体交换和高光谱田间试验,获取不同叶位叶片的最大净光合速率(Amax)、PSⅡ有效光化学量子产量(Fv′/Fm′)、光化学猝灭系数(qP)和高光谱反射率,并对原始高光谱进行倒数、对数和一阶微分变换。根据3种光合参数和4种光谱的相关性分析结果,筛选显著性水平优于0.01的波段作为输入变量,采用偏最小二乘(PLS)、支持向量机(SVM)、多元线性回归(MLR)和人工神经网络(ANN)等方法建立冬小麦叶片光合参量反演模型,以建模和验证的决定系数(R^2)和均方根误差(RMSE)为依据,对不同模型的模拟精度进行比较分析。【结果】(1)3种光合参数和4种光谱的相关性分析结果表明,原始、倒数和对数光谱对3种光合参数(Amax、Fv′/Fm′和qP)的敏感谱区均集中在400—750 nm波谱区间,一阶导数光谱对3个光合参数的敏感谱区为470—560、630—700和700—770 nm波谱区间。(2)Amax、Fv′/Fm′和qP的最优反演模型组合分别为基于倒数光谱的MLR模型、基于一阶导数光谱的MLR模型和基于原始光谱的MLR模型。模型的建模R2分别为0.75、0.65和0.65,验证R2分别为0.73、0.59和0.44,表明基于高光谱模拟Amax和Fv′/Fm′切实可行,模拟qP的有效性需要进一步验证。(3)不同变换的光谱表现能力不同,以PLS模拟Amax为例,光谱的表现能力顺序为原始光谱>倒数光谱>对数光谱>一阶导数光谱� 展开更多
关键词 光合参量 偏最小二乘 支持向量机 多元线性回归 神经网络 高光谱
下载PDF
基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型 被引量:15
15
作者 崔仕文 铁治欣 +1 位作者 丁成富 赵峰 《热力发电》 CAS 北大核心 2017年第4期81-87,共7页
为了能够更好地反映电厂湿法脱硫中的过程参数与脱硫效率之间的关系,本文利用偏最小二乘回归法(PLS)对影响烟气湿法脱硫效率的过程因素进行分析,提取出对湿法脱硫效率影响较大的因素作为主成分,将提取的主成分采用支持向量机(SVM)进行预... 为了能够更好地反映电厂湿法脱硫中的过程参数与脱硫效率之间的关系,本文利用偏最小二乘回归法(PLS)对影响烟气湿法脱硫效率的过程因素进行分析,提取出对湿法脱硫效率影响较大的因素作为主成分,将提取的主成分采用支持向量机(SVM)进行预测,降低了SVM的输入维数,建立了基于偏最小二乘支持向量机(PLS-SVM)的烟气湿法脱硫效率预测模型,并选取某机组石灰石-石膏湿法脱硫设施运行监控数据进行模型的训练和预测。预测分析结果显示,PLS-SVM的预测数据最大绝对误差小于0.65%,平均绝对误差在0.3%左右,说明该模型的预测效果较好,与SVM预测模型相比,提高了预测效率和精度。 展开更多
关键词 偏最小二乘回归 支持向量机 湿法脱硫 脱硫效率 预测模型
下载PDF
基于RBF组合模型的山地红壤有机质含量光谱估测 被引量:14
16
作者 谢文 赵小敏 +3 位作者 郭熙 叶英聪 孙小香 匡丽花 《林业科学》 EI CAS CSCD 北大核心 2018年第6期16-23,共8页
【目的】探讨组合模型在山地红壤有机质含量高光谱估算中应用的可行性,以期为土壤有机质含量估测提供基础数据和科学依据。【方法】基于山地红壤光谱的全波段(400~2 450 nm)研究范围,选择偏最小二乘回归(PLSR)、BP神经网络(BP)和支持向... 【目的】探讨组合模型在山地红壤有机质含量高光谱估算中应用的可行性,以期为土壤有机质含量估测提供基础数据和科学依据。【方法】基于山地红壤光谱的全波段(400~2 450 nm)研究范围,选择偏最小二乘回归(PLSR)、BP神经网络(BP)和支持向量机回归分析(SVMR)3种单一高光谱估测模型,分别获得预测结果,并重构预测结果数据,以绝对误差和最小为目标,计算固定权重与不固定权重两种组合模型的权重值,并基于径向基函数(RBF)神经网络法建立组合模型,探讨不同赋权方法与是否重构数据条件下的最优组合模型。通过均方根误差(RMSE)、预测偏差比(RPD)和决定系数(R2)评价山地红壤有机质含量的预测精度。【结果】单一预测模型中的SVMR估测精度最高,验证决定系数(R2)为0.64,均方根误差为9.76 g·kg-1,测定值标准差与标准预测误差的比值为1.67;在组合模型数据不重构的条件下,不定权组合模型要优于定权组合模型;在组合模型数据重构的条件下,定权组合模型要略优于不定权组合模型,估测精度相差不大;最优模型是数据重构定权组合模型,模型验证决定系数(R2)为0.87,均方根误差为7.91 g·kg-1,测定值标准差与标准预测误差的比值为2.06;组合模型验证精度优于单一模型,说明利用RBF组合模型估算山地红壤有机质含量是可行的。【结论】对山地红壤有机质含量的快速估测而言,单一模型具有操作简单、运算速度快等特点,因而具有较大应用价值,但组合模型能较大限度地利用各种预测样本信息,从而能有效减少应用单一模型时所受随机因素的影响,从而提高山地红壤有机质含量的估测精度。 展开更多
关键词 RBF组合模型 山地红壤 有机质 土壤光谱 偏最小二乘回归 BP神经网络 支持向量机回归
下载PDF
基于NIR分析和模式识别技术的玉米种子识别系统 被引量:14
17
作者 刘天玲 苏琪雅 +1 位作者 孙群 杨丽明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第5期1209-1212,共4页
模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PC... 模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-normSVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM和PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。 展开更多
关键词 近红外光谱 局部线性嵌入 小波变换 主成分分析 偏最小二乘 支持向量机
下载PDF
结合PLS-DA与SVM的近红外光谱软测量方法 被引量:13
18
作者 董学锋 戴连奎 黄承伟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期824-829,共6页
为了提高近红外光谱分析精度,提出结合偏最小二乘判别分析(PLS-DA)与支持向量机(SVM)的软测量方法(PLS-DA-SVM).该方法利用一组由不同类别组成的训练样本,引入二叉树进行多重分类,节点分类器由PLS-DA方法建立;利用偏最小二乘支持向量机(... 为了提高近红外光谱分析精度,提出结合偏最小二乘判别分析(PLS-DA)与支持向量机(SVM)的软测量方法(PLS-DA-SVM).该方法利用一组由不同类别组成的训练样本,引入二叉树进行多重分类,节点分类器由PLS-DA方法建立;利用偏最小二乘支持向量机(PLS-SVM)建立每类样本的定量模型.预测时,用PLS-DA分类树对待测样本进行分类,选择相应的PLS-SVM模型进行定量分析.实验利用PLS-DA-SVM方法和近红外光谱数据建立汽油的研究法辛烷值软测量模型,针对2个批次共计57个成品汽油样本进行蒙特卡洛交叉检验.结果表明,对汽油牌号进行识别,平均分类错误率为0.07%,低于其他常用分类方法;对研究法辛烷值进行预测,均方误差达到0.243,复相关系数达到0.991,较PLS、LS-SVM等方法有显著提高. 展开更多
关键词 软测量 近红外光谱 偏最小二乘 支持向量机
下载PDF
江西省龙南县滑坡易发性评价 被引量:13
19
作者 苏晨旭 田钦 +3 位作者 刘本朝 杨光照 黄宽 黄发明 《科学技术与工程》 北大核心 2019年第17期91-99,共9页
区域滑坡易发性评价是国内外地质灾害研究的重点和热点。目前,国内外学者已提出了支持向量机(support vector machine,SVM)、BP神经网络和随机森林等多种模型并成功用于滑坡易发性评价。但在利用这些机器学习模型评价滑坡易发性时,存在... 区域滑坡易发性评价是国内外地质灾害研究的重点和热点。目前,国内外学者已提出了支持向量机(support vector machine,SVM)、BP神经网络和随机森林等多种模型并成功用于滑坡易发性评价。但在利用这些机器学习模型评价滑坡易发性时,存在着参数选取困难、建模效率低、模型训练时间长和对评价指标解释能力弱等问题。为简化建模过程、提高预测精度及增强模型的可解释性,提出了基于频率比分析和偏最小二乘回归法(partial least squares regression,PLSR)的滑坡易发性评价模型。PLSR模型很好地发挥了主成分分析和回归分析的优势,考虑了评价指标间的内在联系,具有建模过程简洁、可解释性强的优点。将结合频率比法的PLSR模型应用于江西省龙南县滑坡易发性评价,并与BP神经网络、SVM模型的易发性评价结果进行对比。研究表明:PLSR模型的预测精度优于BP神经网络,且与SVM模型预测精度接近;另外,在综合考虑建模效率、预测精度和模型解释能力的情况下,PLSR模型具有更高的实用性。 展开更多
关键词 滑坡易发性 频率比 偏最小二乘回归 BP神经网络 支持向量机
下载PDF
地面高光谱和PROSAIL模型的冬小麦叶绿素反演 被引量:12
20
作者 于汧卉 杨贵军 王崇倡 《测绘科学》 CSCD 北大核心 2019年第11期96-102,136,共8页
针对现有研究在反演叶绿素含量不足的问题,该文基于地面高光谱和实测农学数据,采用PROSAIL模型和连续小波变换并结合偏最小二乘回归、支持向量机和人工神经网络方法反演冬小麦叶绿素。先通过PROSAIL模型模拟作物光谱,再对模拟光谱进行... 针对现有研究在反演叶绿素含量不足的问题,该文基于地面高光谱和实测农学数据,采用PROSAIL模型和连续小波变换并结合偏最小二乘回归、支持向量机和人工神经网络方法反演冬小麦叶绿素。先通过PROSAIL模型模拟作物光谱,再对模拟光谱进行连续小波变换,筛选出敏感波段和尺度并应用于4组实测数据,最后利用小波系数和实测叶绿素构建偏最小二乘回归、支持向量机和人工神经网络反演模型。研究结果表明,利用小波系数构建反演模型的精度相比于植被指数反演有所提高,在基于小波系数反演叶绿素的方法中偏最小二乘法精度略高于其他两种方法。通过将PROSAIL模型、连续小波变换和偏最小二乘回归结合能够实现冬小麦叶绿素遥感估算。 展开更多
关键词 PROSAIL模型 连续小波变换 偏最小二乘回归 支持向量机 人工神经网络
原文传递
上一页 1 2 123 下一页 到第
使用帮助 返回顶部