期刊文献+

结合PLS-DA与SVM的近红外光谱软测量方法 被引量:13

Near-infrared spectroscopy soft-sensing method by combining partial least squares discriminant analysis and support vector machine
下载PDF
导出
摘要 为了提高近红外光谱分析精度,提出结合偏最小二乘判别分析(PLS-DA)与支持向量机(SVM)的软测量方法(PLS-DA-SVM).该方法利用一组由不同类别组成的训练样本,引入二叉树进行多重分类,节点分类器由PLS-DA方法建立;利用偏最小二乘支持向量机(PLS-SVM)建立每类样本的定量模型.预测时,用PLS-DA分类树对待测样本进行分类,选择相应的PLS-SVM模型进行定量分析.实验利用PLS-DA-SVM方法和近红外光谱数据建立汽油的研究法辛烷值软测量模型,针对2个批次共计57个成品汽油样本进行蒙特卡洛交叉检验.结果表明,对汽油牌号进行识别,平均分类错误率为0.07%,低于其他常用分类方法;对研究法辛烷值进行预测,均方误差达到0.243,复相关系数达到0.991,较PLS、LS-SVM等方法有显著提高. To improve the performance of near-infrared spectral analysis, this paper proposes a soft-sensing method (PLS-DA-SVM) which combines partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM). Based on training samples with several classes, firstly, a binary tree built by PLSDA is introduced for multiple classification; secondly, sub-models for quantitative analy are constructed by partial least squares support vector machine (PLS-SVM). For a test sample, PLS-DA classification tree serves to determine its class, and the corresponding PLS-SVM sub-model is selected for quantitative analysis. A PLS-DA-SVM model with near-infrared spectroscopy data was established to determine the research octane number of gasoline samples. Monte Carlo cross validation was preformed with 57 product gasoline samples from 2 oil refineries. Results show that mean classification error rate for the recognition of gasoline brands is 0.07 %, which is lower than other pattern recognition methods. Root mean square error of prediction (RMSEP) is reduced to 0. 243 and correlation coefficient (R^2) is up to 0. 991, which show great improvement upon PLS, LS-SVM and other modeling methods.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期824-829,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2009AA04Z123)
关键词 软测量 近红外光谱 偏最小二乘 支持向量机 soft-sensing near-infrared spectroscopy partial least squares support vector machine
  • 相关文献

参考文献16

  • 1WORKMAN J, WEYWR L. Practical guide to interpre- tive near-infrared spectroscopy [M]. Boca Raton.. CRC Press, 2008: 94-96. 被引量:1
  • 2陆婉珍主编..现代近红外光谱分析技术 第2版[M].北京:中国石化出版社,2006.
  • 3JAIN A K, DUIN R P W, MAO J C. Statistical pattern recognition: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1).. 4- 37. 被引量:1
  • 4BALABIN R M, SAFIEVA R Z, LOMAKINA E I. Gasoline classification using near infrared (NIR) spec- troscopy data: Comparison of multivariate techniques[J]. Analytica Chimica Aeta, 2010, 671(1/2) .. 27 -35. 被引量:1
  • 5GALTIER O, ABBAS O, LE DREAU Y. Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions[J]. Vibration- al Spectroscopy, 2011, 55(1) : 132 - 140. 被引量:1
  • 6SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3) .. 293 - 300. 被引量:1
  • 7BARKER M, RAYENS W. Partial least squares fordiscrimination [J]. Journal of Chemometrics, 2003 (3), 17: 166-173. 被引量:1
  • 8SYLVIE C, DOMINIQUE B, ACHIM K, et al. Appli- cation of PLS-DA in multivariate image analysis [J]. Journal of Chemometrics, 2006, 20(5) .. 221 - 229. 被引量:1
  • 9DE PEINDERA P, VREDENBREGTB M J, VlbbgmJ T, et al. Detection of lipitor countereits: A comparison of NIR and raman spectroscopy in combination with che- mometrics [J]. Journal of Pharmaceutical and Biomedic- al Analysis, 2008, 47(4/5) : 688 - 694. 被引量:1
  • 10杨忠,任海青,江泽慧.PLS-DA法判别分析木材生物腐朽的研究[J].光谱学与光谱分析,2008,28(4):793-796. 被引量:45

二级参考文献25

共引文献67

同被引文献137

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部