The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage.It is difficu...The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage.It is difficult to measure in situ transport of the Agulhas leakage as well as the Agulhas retroflection position due to their intermittent nature.In this study,an innovative kinematic algorithm was designed and applied to the gridded altimeter observational data,to ascertain the longitudinal position of Agulhas retroflection,the stability of Agulhas jet stream,as well as its strength.The results show that the east-west shift of retroflection is related neither to the strength of Agulhas current nor to its stability.Further analysis uncovers the connection between the westward extension of Agulhas jet stream and an anomalous cyclonic circulation at its northern side,which is likely attributed to the local wind stress curl anomaly.To confirm the effect of local wind forcing on the east-west shift of retroflection,numerical sensitivity experiments were conducted.The results show that the local wind stress can induce a similar longitudinal shift of the retroflection as altimetry observations.Further statistical and case study indicates that whether an Agulhas ring can continuously migrate westward to the Atlantic Ocean or re-merge into the main flow depends on the retroflection position.Therefore,the westward retroflection may contribute to a stronger Agulhas leakage than the eastward retroflection.展开更多
The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null positio...The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null position,thereby affecting high-precision control and stability of the servo system.This paper investigates the effects of the clearance structure on leakage behavior at null position of the HESV.A numerical approach was employed to evaluate the effects,and then a mathematical model was established to obtain the variation law of leakage flow rate at null position.The results indicate that the leakage flow rate at null position varies linearly with supply pressure and rounded corner radius,and is nonlinear as a quadratic concave function with annular clearance.The leakage flow rate of the annular clearance and the rounded corner varies with the valve opening in an invariable−nonlinear−linear trend.A test rig system of leakage behavior at null position of the HESV was built to confirm the validity of the numerical model,which agrees well with the conducted experimental study.展开更多
Radioactive tritium leakage from high-pressure storage vessels is a common nuclear leakage event.Different leakage conditions have different effects on tritium diffusion,resulting in different degrees of radioactive h...Radioactive tritium leakage from high-pressure storage vessels is a common nuclear leakage event.Different leakage conditions have different effects on tritium diffusion,resulting in different degrees of radioactive hazards.This study focuses on tritium leakage from high-pressure storage vessels and analyzes the influence of different leakage orifice shapes,leakage positions,and the presence of obstacles in the scene space on tritium leakage diffusion.The results show that there is little difference in the radial diffusion velocity of tritium gas along the jet axis between circular and square leakage orifices.The radial diffusion velocity of tritium gas in the long-axis direction of the rectangular leakage orifice is larger than that in the short-axis direction,and the larger the aspect ratio of the rectangle is,the greater the difference is in the diffusion velocity.In addition,leakage from the storage vessel below the air inlet is beneficial to the dilution of tritium,whereas leakage from the air vents leads to a slow decrease in the tritium concentration.The obstacles present in the tritium scene space hinder the migration of tritium gas and prolong the time for the tritium concentration to reach stabilization.This study provides a theoretical basis for the disposal of tritium in tritium leakage accidents by analyzing the influence of different leakage conditions in storage vessels on tritium gas diffusion.展开更多
When locating the leakage of thermal field of a certain container, it is hard for us to evaluate the leakage with one or several separate thermal infrared images. Instead, panoramic imagery with a wide visual angle an...When locating the leakage of thermal field of a certain container, it is hard for us to evaluate the leakage with one or several separate thermal infrared images. Instead, panoramic imagery with a wide visual angle and high distinguishability is always needed. However, we can only get images for part of the scene because of the limited visual field of thermography and the large size of the measured object in practical. What is more, the hardware that can be used to get panoramic images is always expensive and cannot be used in large scale. Therefore, this paper introduces image mosaic technology, which can be used to get the intact thermal infrared image of the measured and increase the efficiency of detection. The experiment results demonstrate its effectiveness.展开更多
基金The National Key R&D Program of China under contract No.2019YFA0606702the National Natural Science Foundation of China under contract Nos 42176222,91858202,41630963,and 41776003+1 种基金the National Science Foundation under contract No.NSF-IIS-2123264the fund suported by the National Aeronautics and Space Administration under contract No.NASA-80NSSC20M0220.
文摘The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage.It is difficult to measure in situ transport of the Agulhas leakage as well as the Agulhas retroflection position due to their intermittent nature.In this study,an innovative kinematic algorithm was designed and applied to the gridded altimeter observational data,to ascertain the longitudinal position of Agulhas retroflection,the stability of Agulhas jet stream,as well as its strength.The results show that the east-west shift of retroflection is related neither to the strength of Agulhas current nor to its stability.Further analysis uncovers the connection between the westward extension of Agulhas jet stream and an anomalous cyclonic circulation at its northern side,which is likely attributed to the local wind stress curl anomaly.To confirm the effect of local wind forcing on the east-west shift of retroflection,numerical sensitivity experiments were conducted.The results show that the local wind stress can induce a similar longitudinal shift of the retroflection as altimetry observations.Further statistical and case study indicates that whether an Agulhas ring can continuously migrate westward to the Atlantic Ocean or re-merge into the main flow depends on the retroflection position.Therefore,the westward retroflection may contribute to a stronger Agulhas leakage than the eastward retroflection.
基金Project(51705164)supported by the National Natural Science Foundation of China。
文摘The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null position,thereby affecting high-precision control and stability of the servo system.This paper investigates the effects of the clearance structure on leakage behavior at null position of the HESV.A numerical approach was employed to evaluate the effects,and then a mathematical model was established to obtain the variation law of leakage flow rate at null position.The results indicate that the leakage flow rate at null position varies linearly with supply pressure and rounded corner radius,and is nonlinear as a quadratic concave function with annular clearance.The leakage flow rate of the annular clearance and the rounded corner varies with the valve opening in an invariable−nonlinear−linear trend.A test rig system of leakage behavior at null position of the HESV was built to confirm the validity of the numerical model,which agrees well with the conducted experimental study.
基金supported by the Youth Innovation Team of Shaanxi Universities and the Pre-research Fund(No.50926050408).
文摘Radioactive tritium leakage from high-pressure storage vessels is a common nuclear leakage event.Different leakage conditions have different effects on tritium diffusion,resulting in different degrees of radioactive hazards.This study focuses on tritium leakage from high-pressure storage vessels and analyzes the influence of different leakage orifice shapes,leakage positions,and the presence of obstacles in the scene space on tritium leakage diffusion.The results show that there is little difference in the radial diffusion velocity of tritium gas along the jet axis between circular and square leakage orifices.The radial diffusion velocity of tritium gas in the long-axis direction of the rectangular leakage orifice is larger than that in the short-axis direction,and the larger the aspect ratio of the rectangle is,the greater the difference is in the diffusion velocity.In addition,leakage from the storage vessel below the air inlet is beneficial to the dilution of tritium,whereas leakage from the air vents leads to a slow decrease in the tritium concentration.The obstacles present in the tritium scene space hinder the migration of tritium gas and prolong the time for the tritium concentration to reach stabilization.This study provides a theoretical basis for the disposal of tritium in tritium leakage accidents by analyzing the influence of different leakage conditions in storage vessels on tritium gas diffusion.
文摘When locating the leakage of thermal field of a certain container, it is hard for us to evaluate the leakage with one or several separate thermal infrared images. Instead, panoramic imagery with a wide visual angle and high distinguishability is always needed. However, we can only get images for part of the scene because of the limited visual field of thermography and the large size of the measured object in practical. What is more, the hardware that can be used to get panoramic images is always expensive and cannot be used in large scale. Therefore, this paper introduces image mosaic technology, which can be used to get the intact thermal infrared image of the measured and increase the efficiency of detection. The experiment results demonstrate its effectiveness.